End-to-end solutions from raw materials to production equipments for PU foam and mattress.
The batch foaming machine price from Sabtech Technology Limited is made integrating state-of-the-art techniques and humanity design aesthetics. To ensure the reliable characteristics and long-lasting performance, our staff carefully choose each material. Its production process is strict and its quality reaches the international standard, which helps it withstand the test of the time. Besides, it has the property of appealing appearance.
Most clients are greatly delighted with the sales growth brought by Sabtech. According to their feedback, these products are constantly attracting old and new buyers, bringing remarkable economic results. Moreover, these products are more cost-effective compared to other similar products. Therefore, these products are rather competitive and become the hot items in the market.
With years of development, batch foaming machine price is prominent in the minds of our customers. We have cultivated an ongoing relationship with customers based on understanding their needs. At Sabtech Technology Limited, we are eager to provide flexible services, such as the MOQ and product customization.
In September 2021, we received an inquiry from Mr. Abdullah in Saudi Arabia regarding a continuous foaming machine. The client was planning to establish a PU foam factory to produce products for the local and Yemeni markets. He had some basic knowledge about machine usage and selection.
The client had no prior experience in foam production before, so he was particularly concerned about after-sales support and technical assistance.
We began by analyzing the client's target market (specific industry) and understanding the local product requirements (such as foam density, hardness, etc.) to confirm the client's production needs.
Through video conferences, we guided the client through our PU foam production process, providing the client with a concrete understanding of foam production and highlighting the convenience and efficiency advantages of our machines compared to those of other manufacturers.
Drawing upon our more than 20 years of experience in foam foaming, we shared insights with the client about using the machine and common challenges in the foam foaming process, addressing any technical concerns the client may have had.
We also provided the client with factory layout plans to expedite the setup of the entire foam production line while maximizing production efficiency.
Due to the client's high level of trust in our professional service, he ultimately chose us as his supplier for foam machinery and later made repeat purchases for a rebonded foam production line and foam cutting machines.
For many small-scale enterprises, although the continuous production line of polyurethane flexible foam offers high output, the costs are also very high, and the target market may not require such large quantities. As a result, non-continuous production lines for polyurethane flexible foam have become their preferable choice. The following is an introduction to the non-continuous production line for polyurethane flexible foam:
1. Box Foaming Process Equipment
The box foaming process and equipment have been developed as a new technology to accommodate the needs of small-scale polyurethane foam production facilities. It builds upon laboratory and manual foam production techniques, essentially an upscaled version of laboratory foam methods. This process has gone through three development stages. Initially, all component materials were sequentially weighed and added to a larger container, followed by the addition of TDI. After rapid mixing, the mixture was immediately poured into a large box mold. This method had high labor intensity, emitted high concentrations of toxic gases, and posed significant health risks to operators. Additionally, the splattering of materials during pouring would entrain a large amount of air, leading to the formation of large air bubbles within the foam structure and even causing foam cracking. Furthermore, there was a significant amount of leftover waste, resulting in substantial material waste and high production costs.
Later on, the process incorporated metering pumps to convey materials to a mixing barrel with an automatically opening bottom. After high-speed mixing, the bottom plate of the mixing barrel would open, and compressed air would swiftly expel the material into the mold for foam expansion. However, this approach suffered from uneven foam pore structures due to the rapid material flow, leading to swirling foam structures and quality issues like crescent-shaped cracks. The third stage of process improvement is the box foaming device that is mostly adopted today. Its fundamental foaming principle is illustrated in Picture
(a) Raw Material Metering and Mixing (b) Foaming (c) Foam Rises to Limit Height
1 - Elevatable Material Mixing Barrel; 2 - Assemblable Box Mold; 3 - Floating Box Top Plate; 4 - Foam Body
Picture 1: Schematic Diagram of Box Foaming Principle
The industrial production equipment for box foaming primarily consists of raw material tanks, metering pump units, elevatable mixing barrels, and assemblable wooden box molds. As depicted in the schematic diagram of the box foaming equipment manufactured by Hennecke (Picture 2), the foaming raw materials are stored in tanks and regulated by control devices to attain the required processing temperature range, typically maintained at 23°C ± 3°C. Sequentially, the metering pump injects polyether polyols, catalyst, surfactants, foaming agents, etc., into the mixing barrel for a stirring duration of 30 to 60 minutes. Next, according to the formulation, TDI is introduced, either directly or through an intermediate container with a bottom switch. Immediate mixing follows TDI addition. Depending on the materials and formulation, the stirring speed is usually controlled at 900 to 1000 revolutions per minute (r/min), with a stirring time of 3 to 8 seconds. After stirring, the mixing barrel is swiftly lifted. The lower part of the barrel lacks a bottom and is placed on the mold box's bottom plate upon lowering, utilizing a sealing ring at the barrel's bottom edge to prevent material leakage.
When lifted, the well-mixed slurry can be directly spread and dispersed on the bottom plate of the box mold, allowing natural foam rise. To prevent the formation of a domed surface on the upper part during foaming, an upper mold plate that matches the mold area and allows for upward limit movement is equipped. The mold box primarily comprises rigid wooden panels, with the bottom plate fixed on a movable mold transport carriage. All four side panels are assemblable, featuring quick-opening and closing locking mechanisms. The inner sides of the panels are coated with silicone-based release agents or lined with polyethylene film material to prevent adhesion. After 8 to 10 minutes of forced maturation within the box, the side panels of the mold box are opened, allowing the removal of block-shaped flexible foam. Following an additional 24 hours of maturation, these foam blocks can undergo cutting and other post-processing procedures.
1 - Raw Material Tank; 2 - Metering Pump Unit; 3 - Control Cabinet; 4 - Mixing Barrel with Elevating Device; 5 - Foaming Box; 6 - Foam Finished Product; 7 - Floating Plate
Picture 2: Box Foaming Equipment Manufactured by Hennecke (BFM100/BFM150)
Box foaming process and equipment exhibit characteristics such as simple operation, compact and straightforward equipment structure, low investment, small footprint, and convenient maintenance. These features make it particularly suitable for small enterprises engaged in intermittent production of low-density block foam. However, its drawbacks are also quite evident: lower production efficiency, less favorable production environment, high concentration of emitted toxic gases on-site, necessitating the use of highly effective exhaust and toxic gas purification systems.
To enhance mixing efficiency, some companies have added several vertical and equidistant baffles to the inner walls of the mixing barrel. These baffles, combined with high-speed spiral-type agitators, facilitate high-speed mixing. This approach can to a certain extent reduce laminar flow effects in the mixing liquid and improve mixing efficiency. An example of this is our product, the SAB-BF3302. For the product's appearance and technical specifications, please refer to Picture 3.
Picture 3: Fully Automatic Box Foaming Machine (Sabtech Technology Limited)
This production line comes with both fully automatic computer control and manual control modes. It's suitable for producing flexible polyurethane foam with densities ranging from 10 to 60 kg/cm. Maximum foam output: 180L. Foam height: 1200mm. Mixing power: 7.5kW. Total power: 35kW.
2. Equipment for Open-Cell Foam Preparation
Open-cell polyurethane foam is a functional foam product developed in the 1980s. It possesses a high porosity, a distinct network structure, softness, breathability, and good mechanical strength. It finds wide application as excellent filtration and shock-absorption material in transportation, instrumentation, medical material filtration membranes, and as catalyst carriers in the chemical industry. Filling it into aircraft fuel tanks can suppress oil agitation and reduce the risk of explosions. Impregnating it with ceramic slurry and high-temperature sintering results in a novel open-cell ceramic filter material used in the metallurgical industry.
The preparation of open-cell polyurethane foam involves methods such as steam hydrolysis, alkaline soaking, and explosion. In industrial production, the explosion method is predominantly used. Initially, polyurethane foam of a specific pore size is prepared using the box foaming process. Subsequently, it's placed in dedicated explosion network equipment, filled with explosive gas, and ignited after completely filling the foam body. By utilizing the impact energy and high-temperature heat generated by the explosion parameters, the cell walls of the polyurethane foam are ruptured and fused onto the cell walls, forming a distinct network structure, as shown in Picture 4.
Picture 4: Clearly Networked Open-Cell Foam
Methods like steam hydrolysis or alkaline soaking are used to prepare open-cell foam. However, there are issues of low efficiency, poor quality, and environmental pollution with these methods. They are mainly employed for small-scale production such as laboratory sample testing. Large-scale production primarily uses the explosion method.
ATL Schubs GmbH, a German company, specializes in the research and development of polyurethane reticulated foam and manufactures the ReticulatusTM foam explosion machinery. The explosion chamber of the reticulated foam explosion equipment comes in two forms: cylindrical and rectangular. The former is suitable for cylindrical foam, while the latter is more versatile. It can be used not only for square foam but also for processing reticulated foam from cylindrical foam, as shown in Picture 5. The explosion chamber is constructed from high-quality 100mm-thick steel plates. Operation is controlled by a computer modem, offering features like automatic opening and closing, automatic locking, automatic operation, and automatic alerts. Additionally, remote program design and modification can be facilitated through data transmission sensors.
Picture 5: Polyurethane Foam Reticulation Processing Equipment (ATL Schubs)
During production, foam bodies measuring 3 to 6 meters in length that are intended for reticulation are pushed into the explosion chamber. The chamber's door is closed hydraulically, and the air inside the chamber is evacuated using a vacuum pump. Under computer control, a precise proportion of oxygen and hydrogen gases is introduced, and the gas mixture's ratio is mechanically adjusted based on factors such as foam sample type and network size requirements.
Sensors continuously monitor the process, ensuring that all process parameters are within the specified conditions before controlled detonation is initiated. The explosive force and flame intensity generated by the explosion penetrate through the entire foam body, creating a distinct network structure. After forming, the foam body is cooled, residual materials and waste gases are purged using nitrogen, and the pressure chamber can then be opened to retrieve the reticulated foam. The entire process takes approximately 8 to 10 minutes. The pore diameter of the reticulated foam falls within the range of 10 to 100 pores per inch (ppi) (Note: ppi refers to the number of pores within one inch).
The above provides some insight into the non-continuous production process of polyurethane flexible foam. I hope this information proves helpful to you.
The stability of polyurethane soft foam sponge foaming refers to whether the foam breaks, closes pores, collapses, and also includes product hardness, density, elasticity, tensile strength, pore size, and other aspects that meet customer requirements. To achieve these, it is necessary to standardize raw materials, formulations, and operating parameters, and to control the complex and diverse chemical reactions in different environments.
Density: Density is measured in kilograms per cubic meter or grams per cubic centimeter. For irregularly shaped small products, it is not easy to measure the cross-sectional area. One can use graph paper with small squares (such as graph paper with 2-millimeter square sides) to draw the cross-sectional area of the product being measured and calculate the density by counting squares. During the production process, the formulation density, flow rate, conveyor belt speed, and foam width have been determined. Measuring the foam height will reveal the foam density. For example, if a sponge reaches a height of 95 centimeters, the density is 20 kilograms per cubic meter. Density is related to the formulation and is also affected by the reaction rate. There is a density difference between the top and bottom of the same foam.
Hardness: Sponge hardness can be divided into two types. One reflects the surface hardness of the product, used for shoe materials, while the other reflects the overall hardness of the product, used for furniture sponges. The hardness of the foam is related to the hard segments, heat, and raw material content during the reaction, corresponding to the materials TDI, MC, and POP. The hardness of the foam is also affected by the degree of cross-linking. As the density of the sponge decreases, it becomes difficult to increase the amount of POP. For low-density, high-hardness foam, the focus is on how to increase POP and TDI in the formulation to reduce MC. For medium-high-density, high-hardness foam, the focus is on maximizing the hardening effect of POP and TDI.
Elasticity: Elasticity is primarily related to the molecular weight of polyether. The higher the molecular weight, the higher the product's resilience. Secondly, it is related to the formation of side chains during the sponge reaction; the fewer the side chains, the better the elasticity. Reducing the TDI index can reduce the formation of side chains, and reducing the heat inside the foam can also reduce the formation of side chains. However, if there are too few side chains, the tolerance of the formulation is not high, and the foam is not stable. Sponge elasticity is also related to the balance of the formulation. When ordinary foam sponge closes its pores, the elasticity drops sharply. High-hardness foam does not have good elasticity, but foam that is too soft also does not have high resilience.
Tensile Strength: Furniture sponges are mainly used for sitting and leaning, so the tensile strength requirements are not too high. The tensile strength of the sponge is related to the NCO content and cross-linking degree in the meridians. Increasing the TDI index and increasing the heat inside the foam can strengthen the NCO content and cross-linking degree. Increasing MC reduces the increase in tensile strength in many cases. The amount of TDI that a formulation can "accommodate" is related to the foaming method, such as high-pressure machines, low-pressure machines, and manual foaming, which are different. A sponge with a high elongation rate does not necessarily have a high tear strength. For products that emphasize tensile strength, adding a small amount of stone powder can greatly reduce the tensile strength without losing the original.
Pores: Foam with very good pores often becomes mid-to-high-end foam, and the price also rises significantly. Pore formation is a comprehensive problem, and to obtain uniform, delicate, and defect-free pores, one must have a deep understanding of the machinery, raw materials, formulations, and parameters. The formation of pinholes and pockmarks is generally caused by excessive air entrainment in the raw materials during stirring at the machine head or during the movement of the raw materials. It may also result from poor raw material quality or contamination. The theory that air leaks in pipes causing pinholes is not tenable. During foaming, the pressure inside the pipe is higher than the atmospheric pressure outside the pipe. Only the raw material flows out of the pipe, and air from the outside cannot enter.
The production of block-shaped soft foam typically utilizes the batch foam machine foaming process, a gap-type production method. This method evolved from manual foaming in laboratories. The process involves immediately pouring the mixed reaction materials into an open mold resembling a wooden or metal box, hence the name "boxed foam." The molds (boxes) for boxed foam can be rectangular or cylindrical. To prevent the foam block from forming a domed top, a floating cover plate can be placed on the top of the foam during foaming. The cover plate stays closely attached to the top of the foam and gradually moves upward as the foam rises.
The main equipment for boxed foam production includes: 1) Electric-mechanical stirrer, mixing barrel; 2) Mold box; 3) Weighing tools such as scales, platform scales, measuring cups, glass syringes, and other measuring devices; 4) Stopwatch for controlling mixing time. A small amount of mold release agent is applied to the inner walls of the box to facilitate easy removal of the foam.
The advantages of producing soft foam using the boxed foam method include: low equipment investment, small footprint, simple equipment structure, easy and convenient operation and maintenance, and flexible production. Some small and underfunded domestic and township enterprises use this method to produce polyurethane soft foam. Boxed foam molding is a non-continuous production method for soft foam, so the production efficiency is lower than continuous methods, and the equipment is mostly manually operated, resulting in higher labor intensity. Production capacity is limited, and there is a greater loss in cutting foam plastics. The process parameters for boxed foam should be controlled within a certain range because even with the same formula, the foam properties may not be the same when different process parameters are used. The raw material temperature should be controlled at (25±3) degrees Celsius, mixing speed at 900 to 1000r/min, and mixing time at 5 to 12 seconds. The mixing time of the polyether and additives mixture before adding TDI can be flexibly adjusted depending on the situation, and after adding TDI, a mixing time of 3 to 5 seconds is sufficient, with the key being thorough mixing after TDI addition.
During boxed foam molding, attention should be paid to the following aspects:
1) Prepare before production, including material temperature and machine equipment inspection;
2) Measure as accurately as possible;
3) Control the mixing time appropriately;
4) Pour the mixed material liquid quickly and steadily, avoiding excessive force;
5) Ensure the box is placed steadily, with the bottom paper flat, to avoid uneven material flow during pouring;
6) When the foam rises, gently press the cover to ensure the foam rises smoothly;
7) Additives should be used as specified, and pre-mixed materials should not be left for too long.
Three types of foam equipment have emerged in boxed foam molding. Initially, various raw materials were weighed into a container according to the formula, mixed with a high-speed mixer, and poured into the box mold for foaming and shaping. This method often resulted in residue in the mixing container. An improved method used a metering pump to transport the raw materials to the mixing barrel for uniform mixing. A mechanical device automatically closed the bottom of the barrel, and compressed air was used to press the material into the foaming box for shaping. Both of these methods could create eddies due to the rapid influx of materials into the box, which might cause defects or depressions in the foam products. The most reasonable boxed foam device is to place a bottomless mixing barrel directly in the center of the foaming box. A metering pump delivers the various raw materials needed for foaming into the mixing barrel. After mixing for a few seconds, the lifting device raises the mixing barrel out of the foaming box, allowing the foaming material to flow smoothly over the entire box bottom. This prevents foam cracking due to material eddies, and ensures relatively uniform height throughout the foam.
A pressure device can be added to the expanding foam material to produce flat-topped foam, reducing waste during cutting. This device is suitable for the production of polyether-type polyurethane soft foam and high rebound soft block foam. For polyvinyl acetate polyurethane blocks, this method cannot be used due to the high viscosity of the material, and continuous methods are generally employed.
Understanding the principles behind foam reactions is crucial. To master foaming, we must strive to establish a foam reaction model in our minds using the following four reaction equations. Through familiarity with the variations within the model, we cultivate sensitivity that allows us to comprehend the entire foam reaction process. This approach helps structure our knowledge base and professional skills in polyurethane foam. Whether actively studying foam reaction principles or passively exploring them during the foaming process, it serves as a vital means for us to deepen our understanding of formulations and enhance our skills.
Reaction 1
TDI + Polyether → Urethane
Reaction 2
TDI + Urethane → Isocyanurate
Reaction 3
TDI + Water → Urea + Carbon Dioxide
Reaction 4
TDI + Urea → Biuret (Polyurea)
01: Reactions 1 and 2 are chain-growth reactions, forming the main chain of the foam. Before the foam reaches two-thirds of its maximum height, the main chain rapidly elongates, with chain-growth reactions predominating inside the foam. At this stage, due to relatively low internal temperatures, reactions 3 and 4 are not prominent.
02: Reactions 3 and 4 are cross-linking reactions, forming the branches of the foam. Once the foam reaches two-thirds of its maximum height, the internal temperature rises, and reactions 3 and 4 intensify rapidly. During this stage, reactions 1 to 4 are vigorous, marking a critical period for the formation of foam properties. Reactions 3 and 4 provide stability and support to the foam system. Reaction 1 contributes to foam elasticity, while reactions 3 and 4 contribute to foam tensile strength and hardness.
03: Gas-producing reactions are termed foaming reactions. The generation of carbon dioxide is a foaming reaction and the primary exothermic reaction in polyurethane foam. In reaction systems containing methane, the vaporization of methane constitutes a foaming reaction and an endothermic process.
04: Reactions leading to the formation of foam constituents are known as gelation reactions, encompassing all reactions except for gas-producing reactions. This includes the formation of urethane, urea, isocyanurate, and biuret (polyurea) from reactions 1 to 4.
Contact Person: Wenky Lau
Contact Number: +86-15687268672
Email: sales1@alforu.cn
WhatsApp: +86 15687268672
Company Address: NO. 18 South Industry Road, Dongguan City, Guangdong Province China