End-to-end solutions from raw materials to production equipments for PU foam and mattress.
pu foaming machine manufacturers" is designed as Sabtech Technology Limited got inspired by the latest trade shows and runway trends. Every small detail in the development of this product is paid attention to, which makes a big difference in the end. The design is not just about how this product looks, it’s also about how it feels and works. The form must harmonize with the function – we want to convey that feeling in this product.
Sabtech branded products meet the needs of a sophisticated marketplace through smarter design and functionality, and greater sustainability. We are working to understanding customers’ industries and challenges, and these products and solutions are translated from the insights that address the needs, thus having created a good international image and continually giving our customers an economic edge.
At Sabtech Technology Limited, customers can get products including our hot pu foaming machine manufacturers" and one-stop service as well. We are capable of customizing the products with various styles and specifications. With a full range of transportation system of the international logistics, we guarantee the goods to be delivered safely and fast.
Phase One: Gas Nucleation Process
The raw materials react in the liquid phase or rely on the generation of gas substances and gas volatilization during the reaction. As the reaction progresses and a large amount of heat is generated, the amount of gas substance generated and volatilized continuously increases. When the gas concentration exceeds the saturation concentration, fine gas bubbles begin to form in the solution phase and rise. As the reaction nears its end, a milky phenomenon appears in the liquid polyurethane material, known as the "milky time."
Phase Two: Self-nucleation Process
In this stage, the gas concentration continues to increase and reaches a certain level. After that, the gas concentration gradually decreases, and new bubbles no longer form. The gas in the solution gradually reaches an equilibrium saturation concentration. During this stage, the viscosity of the liquid material gradually increases, and the gas continuously merges and expands in the gradually viscous liquid phase. The volume of the bubbles continues to expand. The viscous liquid phase forming the outer wall of the bubbles gradually thins. Due to the surface tension relationship between the gas and liquid interfaces, the bubble volume increases from small to large, gradually transforming from a spherical shape into a three-dimensional geometric shape composed of polymer thin films, finally forming an open network structure of three-dimensional micropores. In the synthesis process of polyurethane foam, this stage exhibits polymer volume expansion and foam rising.
Phase Three:
After the gas concentration drops to a certain level, bubbles no longer form. With the permeation of the gas, the concentration continues to decrease, reaching the final saturated equilibrium in the process of the polymeric foam wall transitioning from a viscous liquid state to a non-flowing solid state.
Testing Conditions:
1. Fast foaming is taken from the center of the foam, while molded foam samples are taken from the central part or for whole sample testing.
2. Newly made foam should be matured for 72 hours in its natural state before sampling. Samples should be placed in a constant temperature and humidity environment (as per GB/T2918: 23±2℃, relative humidity 50±5%).
Density: Density = Mass (kg) / Volume (m3)
Hardness: Indentation Load Deflection (ILD), Compression Load Deflection (CLD)
The main difference between these two test methods is the loading area of the foam plastic. In the ILD test, the sample is subjected to a compressed area of 323 cm2, while in CLD the entire sample is compressed. Here, we will only discuss the ILD test method.
In the ILD test, the sample size is 38*38*50mm, with a test head diameter of 200mm (with a round corner of R=10 on the bottom edge), and a support plate with 6mm holes spaced 20mm apart. The test head loading speed is (100±20) mm/min. Initially, a pressure of 5N is applied as the zero point, then the sample is compressed to 70% of its thickness at the zero point, and unloaded at the same speed. This loading and unloading is repeated three times as pre-loading, then immediately compressed at the same speed. The compression thicknesses are 25±1% and 65±1%. After reaching the deformation, hold for 30±1s and record the relative indentation value. The recorded value is the indentation hardness at that compression level.
Additionally, 65% ILD / 25% ILD = Compression Ratio, which is a measure of foam comfort.
Tensile Strength, Elongation at Break: Refers to the maximum tensile stress applied during the tensile test until fracture, and the percentage elongation of the sample at fracture.
Tensile Strength = Load at Fracture / Original Cross-sectional Area of Sample
Elongation at Break = (Fracture Distance - Original Distance) / Original Distance * 100%
Tear Strength: Measures the material's resistance to tearing by applying specified tearing force on a sample of defined shape.
Sample size: 150*25*25mm (GB/T 10808), with the sample thickness direction as the foam rise direction. A 40mm long incision is made along the thickness direction (foam rise direction) at the center of one end of the sample. Measure the thickness along the sample thickness direction, then open the sample and clamp it in the test machine fixture. Apply load at a speed of 50-20mm/min, using a blade to cut the sample, keeping the blade at the center position. Record the maximum value when the sample breaks or tears at 50mm.
Tear Strength = Maximum Force Value (N) / Average Thickness of Sample (cm)
Usually, three samples are tested, and the arithmetic mean is taken.
Resilience: Measures the foam's rebound performance by allowing a given diameter, weight steel ball to freely fall onto the surface of the foam plastic sample from a specified height. The ratio of the rebound height to the steel ball's drop height indicates the foam's resilience.
Test Requirements: Sample size 100*100*50mm, the ball drop direction should be consistent with the foam usage direction. The steel ball size is ∮164mm, weight 16.3g, and it drops from a height of 460mm.
Resilience Rate = Steel Ball Rebound Height / Steel Ball Drop Height * 100%
Note: Samples should be horizontal, steel ball should be fixed before dropping (static), each sample is tested three times with 20s intervals, and the maximum value is recorded.
Compression Permanent Deformation: In a constant environment, the foam material sample is maintained under constant deformation for a certain period, then allowed to recover for a period of time, observing the effect of the deformation on the sample's thickness. The ratio of the difference between the initial thickness and final thickness of the sample to the initial thickness represents the foam plastic's permanent compression deformation.
Compression Permanent Deformation = (Initial Thickness of Sample - Final Thickness of Sample) / Initial Thickness of Sample * 100
Fire Resistance
VOC (Volatile Organic Compounds)
Calculation of foaming distance for continuous foaming machine
Given: Bubble release time for the formula is 108 seconds, conveyor belt speed during foaming is 4.6 meters per minute. Calculate the swinging and trough foaming distances.
Foaming distance when swinging: (108/60) x 4.6 = 8.28 meters
Foaming distance when troughing: [((108-18)/60)] x 4.6 = 6.9 meters
Explanation: For the same formula, continuous foaming machine has a shorter bubble release time than small bubbles. The calculated foaming distance is shorter than the actual foaming distance. This method only provides approximate confirmation of the foaming distance, supporting the adjustment of the settling plate. Troughing: 18" indicates the time in seconds that the raw material stays in the overflow trough.
Calculation of foaming height for continuous foaming machine
Given: Formula flow rate: 80 kilograms per minute for polyether, 20 for white polyether, 60 for TDI, 20 for stone powder, conveyor belt speed 4.5 meters per minute, mold width 1.65 meters, producing foam with a density of 25 kilograms per cubic meter. What is the foaming height in meters?
Total formula weight: 80 + 20 + 60 + 20 = 180 kilograms
Formula volume: 180/25 = 7.2 cubic meters
Base area of conveyor running per minute:
4.5 x 1.65 = 7.425 cubic meters
Foaming height: 7.2/7.425 = 0.97 meters
Explanation: Silicone oil, amine, and tin are not considered here as they offset the amount of carbon dioxide used during the foaming process. Moisture content (MC) is not considered because MC does not increase foam weight when vaporized.
Foaming Daily Operation
Beginners worry that improper adjustment of the settling plate will cause the liquid sprayed from the nozzle to surge forward or backward, affecting foaming. The reaction rate gradually increases within the first two minutes after starting the machine, sometimes requiring corresponding adjustments to the settling plate. Adjustments to the settling plate are more critical in formulas with low density and high MC.
TDI flow rate can be calculated by determining the corresponding scale value for the flow rate, but it is recommended to measure the TDI flow rate during the first foam production. Flow rate is too important; if the flow rate is incorrect, everything else will be a mess. It's best to rely on the simplest and most intuitive method of measuring flow rate.
When powder is being mixed, the mixed stone powder should be left overnight and production should start the next day. For formulations containing melamine and stone powder, it is recommended to first mix the melamine with the polyether for a period of time before adding the stone powder.
Formulas for foam machines with longer mixing chamber or more teeth on the mixing shaft typically have less amine and lower material temperature. Conversely, formulas for foam machines with shorter mixing chamber or fewer teeth on the mixing shaft typically have more amine and higher material temperature.
For the same formula, when switching between dual spray swing heads and single spray swing heads, if the cross-sectional area of the two nozzles is similar, the requirements for the fineness and number of layers of the mesh are similar.
Correction of small material flow rate can be done by measuring the return flow rate of the small material, or by dividing the total usage by the foaming time for correction. When the values obtained from the two correction methods differ significantly, the data from the second correction method should be used.
Formulas for soft foam with better properties are usually in an unstable range, such as lower TDI index, lower water to MC ratio, lower T-9 dosage, and lower silicone oil dosage. Just like in our jobs, there must be effort before reward.
Understanding the principles behind foam reactions is crucial. To master foaming, we must strive to establish a foam reaction model in our minds using the following four reaction equations. Through familiarity with the variations within the model, we cultivate sensitivity that allows us to comprehend the entire foam reaction process. This approach helps structure our knowledge base and professional skills in polyurethane foam. Whether actively studying foam reaction principles or passively exploring them during the foaming process, it serves as a vital means for us to deepen our understanding of formulations and enhance our skills.
Reaction 1
TDI + Polyether → Urethane
Reaction 2
TDI + Urethane → Isocyanurate
Reaction 3
TDI + Water → Urea + Carbon Dioxide
Reaction 4
TDI + Urea → Biuret (Polyurea)
01: Reactions 1 and 2 are chain-growth reactions, forming the main chain of the foam. Before the foam reaches two-thirds of its maximum height, the main chain rapidly elongates, with chain-growth reactions predominating inside the foam. At this stage, due to relatively low internal temperatures, reactions 3 and 4 are not prominent.
02: Reactions 3 and 4 are cross-linking reactions, forming the branches of the foam. Once the foam reaches two-thirds of its maximum height, the internal temperature rises, and reactions 3 and 4 intensify rapidly. During this stage, reactions 1 to 4 are vigorous, marking a critical period for the formation of foam properties. Reactions 3 and 4 provide stability and support to the foam system. Reaction 1 contributes to foam elasticity, while reactions 3 and 4 contribute to foam tensile strength and hardness.
03: Gas-producing reactions are termed foaming reactions. The generation of carbon dioxide is a foaming reaction and the primary exothermic reaction in polyurethane foam. In reaction systems containing methane, the vaporization of methane constitutes a foaming reaction and an endothermic process.
04: Reactions leading to the formation of foam constituents are known as gelation reactions, encompassing all reactions except for gas-producing reactions. This includes the formation of urethane, urea, isocyanurate, and biuret (polyurea) from reactions 1 to 4.
The formulations for the same product can vary significantly across different regions, raw materials, machinery, and conditions, so formulations are provided for reference only. We'll illustrate this using the formulation for a regular flexible PU foam. The reasons for using a regular high-formula flexible PU foam as an example are:
Regular foam polyether has low reactivity, so its reaction with water and TDI is not very intense, unlike high-resilience or slow-resilience polyether which reacts very strongly with water and TDI.
The reaction rates of regular polyether with TDI and water with TDI are relatively similar, making them easier to coordinate during the reaction process. Therefore, the regular flexible PU foam formulation effectively demonstrates the reaction principles.
Now let's discuss tear strength.
Tear strength is related to the following three factors: 1. Crosslinking reaction; 2. Hard segments and soft segments; 3. Internal heat of the foam.
The stronger the crosslinking reaction, the higher the tear strength.
The more hard segments in the flexible PU foam, the higher the tear strength.
The internal heat of the foam controls the crosslinking reaction and hard segments. The higher the internal heat, the stronger the crosslinking reaction and the greater the generation of hard segments.
It is important to note that the crosslinking reaction is not controlled by amines and tin; it is controlled by the internal heat of the foam.
Next, let's look at the formulations.
First, we'll compare Formulation 1 with the original formulation. The main difference is that Formulation 1 has one more part of TDI than the original formulation, so the TDI index of Formulation 1 is higher. The crosslinking reaction also has a characteristic that it is related to the TDI index; the higher the TDI index, the faster and stronger the crosslinking reaction. Therefore, the tear strength of Formulation 1 is superior to the original formulation.
Now let's examine Formulation 2. In Formulation 2, the water content has increased, and the methane content has decreased. The reaction between water and TDI is exothermic, while methane is endothermic. This increase in water and decrease in methane result in a higher internal temperature in Formulation 2 compared to the original formulation. As the internal heat increases, the crosslinking reaction and hard segments also increase, so the tear strength of Formulation 2 is significantly better than the original formulation. This is also a primary method for adjusting tear strength.
Finally, let's look at Formulation 3. Formulation 3 has an increased amount of A33, which catalyzes the reaction between water and TDI. Therefore, the increase in A33 also raises the internal heat, resulting in a tear strength greater than the original formulation.
Additionally, it is worth noting that the substances produced by crosslinking reactions and hardening are related to the internal heat of the foam. These substances not only improve tear strength but also enhance the thermal stability of the foam. For example, the British Standard for thermal weight loss is an indicator of the foam's thermal stability. In other words, the thermal stability of Formulations 1, 2, and 3 is superior to the original formulation.
Contact Person: Wenky Lau
Contact Number: +86-15687268672
Email: sales1@alforu.cn
WhatsApp: +86 15687268672
Company Address: NO. 18 South Industry Road, Dongguan City, Guangdong Province China