End-to-end solutions from raw materials to production equipments for PU foam and mattress.
styrofoam cutting machine manufacturers is highly maintained as the star product of Sabtech Technology Limited. Featured by using eco-friendly materials, the product stands out for its sustainable product life cycles. The quality control process is strictly implemented by a team of professional technicians to eliminate the defects. Besides, as we come to recognize the importance of customer feedback, the product is constantly improved to meet updated requirements.
We actively work to create and communicate a positive image to our customers and has established a brand of own - Sabtech, which has proved to be a great success for having a self- owned brand. We have contributed a lot to increasing our brand image in recent years with more investment in promotion activities.
People are guaranteed to get their expected warm answer from the service staff of Sabtech Technology Limited and to get the best deal for styrofoam cutting machine manufacturers.
In September 2021, we received an inquiry from Mr. Abdullah in Saudi Arabia regarding a continuous foaming machine. The client was planning to establish a PU foam factory to produce products for the local and Yemeni markets. He had some basic knowledge about machine usage and selection.
The client had no prior experience in foam production before, so he was particularly concerned about after-sales support and technical assistance.
We began by analyzing the client's target market (specific industry) and understanding the local product requirements (such as foam density, hardness, etc.) to confirm the client's production needs.
Through video conferences, we guided the client through our PU foam production process, providing the client with a concrete understanding of foam production and highlighting the convenience and efficiency advantages of our machines compared to those of other manufacturers.
Drawing upon our more than 20 years of experience in foam foaming, we shared insights with the client about using the machine and common challenges in the foam foaming process, addressing any technical concerns the client may have had.
We also provided the client with factory layout plans to expedite the setup of the entire foam production line while maximizing production efficiency.
Due to the client's high level of trust in our professional service, he ultimately chose us as his supplier for foam machinery and later made repeat purchases for a rebonded foam production line and foam cutting machines.
In December 2021, we received an inquiry from Mr. Hairun in Malaysia. Mr. Hairun is a mattress manufacturer in need of producing rebonded foam. He had limited knowledge about machine usage and selection and had no prior experience with the production process. Therefore, he required guidance from experts who could assist him from the ground up.
We systematically explained the principles of foam production to Mr. Hairun, along with the necessary materials and equipment. We also took him on a tour of our factory to provide a clear understanding of the entire production process.
After understanding Mr. Hairun's preferences for the rebonded foam, including density, softness, and market prices, we offered him the most suitable foam production solution. We also provided him with information on foam production costs and compared raw material prices for his reference.
Based on the client's needs, budget, and existing factory layout, we devised a cost-effective machine configuration and layout plan for his facility, including an assessment of startup costs.
Once the machines were successfully installed, our team of engineers provided Mr. Hairun with one-on-one foam production training. When he successfully produced the foam he desired for the first time, he called us and said, "I am happy with crying, thank you very much!" Afterward, he purchased a batch foam machine from us and continued to reorder foam chemical materials from our company.
For many small-scale enterprises, although the continuous production line of polyurethane flexible foam offers high output, the costs are also very high, and the target market may not require such large quantities. As a result, non-continuous production lines for polyurethane flexible foam have become their preferable choice. The following is an introduction to the non-continuous production line for polyurethane flexible foam:
1. Box Foaming Process Equipment
The box foaming process and equipment have been developed as a new technology to accommodate the needs of small-scale polyurethane foam production facilities. It builds upon laboratory and manual foam production techniques, essentially an upscaled version of laboratory foam methods. This process has gone through three development stages. Initially, all component materials were sequentially weighed and added to a larger container, followed by the addition of TDI. After rapid mixing, the mixture was immediately poured into a large box mold. This method had high labor intensity, emitted high concentrations of toxic gases, and posed significant health risks to operators. Additionally, the splattering of materials during pouring would entrain a large amount of air, leading to the formation of large air bubbles within the foam structure and even causing foam cracking. Furthermore, there was a significant amount of leftover waste, resulting in substantial material waste and high production costs.
Later on, the process incorporated metering pumps to convey materials to a mixing barrel with an automatically opening bottom. After high-speed mixing, the bottom plate of the mixing barrel would open, and compressed air would swiftly expel the material into the mold for foam expansion. However, this approach suffered from uneven foam pore structures due to the rapid material flow, leading to swirling foam structures and quality issues like crescent-shaped cracks. The third stage of process improvement is the box foaming device that is mostly adopted today. Its fundamental foaming principle is illustrated in Picture
(a) Raw Material Metering and Mixing (b) Foaming (c) Foam Rises to Limit Height
1 - Elevatable Material Mixing Barrel; 2 - Assemblable Box Mold; 3 - Floating Box Top Plate; 4 - Foam Body
Picture 1: Schematic Diagram of Box Foaming Principle
The industrial production equipment for box foaming primarily consists of raw material tanks, metering pump units, elevatable mixing barrels, and assemblable wooden box molds. As depicted in the schematic diagram of the box foaming equipment manufactured by Hennecke (Picture 2), the foaming raw materials are stored in tanks and regulated by control devices to attain the required processing temperature range, typically maintained at 23°C ± 3°C. Sequentially, the metering pump injects polyether polyols, catalyst, surfactants, foaming agents, etc., into the mixing barrel for a stirring duration of 30 to 60 minutes. Next, according to the formulation, TDI is introduced, either directly or through an intermediate container with a bottom switch. Immediate mixing follows TDI addition. Depending on the materials and formulation, the stirring speed is usually controlled at 900 to 1000 revolutions per minute (r/min), with a stirring time of 3 to 8 seconds. After stirring, the mixing barrel is swiftly lifted. The lower part of the barrel lacks a bottom and is placed on the mold box's bottom plate upon lowering, utilizing a sealing ring at the barrel's bottom edge to prevent material leakage.
When lifted, the well-mixed slurry can be directly spread and dispersed on the bottom plate of the box mold, allowing natural foam rise. To prevent the formation of a domed surface on the upper part during foaming, an upper mold plate that matches the mold area and allows for upward limit movement is equipped. The mold box primarily comprises rigid wooden panels, with the bottom plate fixed on a movable mold transport carriage. All four side panels are assemblable, featuring quick-opening and closing locking mechanisms. The inner sides of the panels are coated with silicone-based release agents or lined with polyethylene film material to prevent adhesion. After 8 to 10 minutes of forced maturation within the box, the side panels of the mold box are opened, allowing the removal of block-shaped flexible foam. Following an additional 24 hours of maturation, these foam blocks can undergo cutting and other post-processing procedures.
1 - Raw Material Tank; 2 - Metering Pump Unit; 3 - Control Cabinet; 4 - Mixing Barrel with Elevating Device; 5 - Foaming Box; 6 - Foam Finished Product; 7 - Floating Plate
Picture 2: Box Foaming Equipment Manufactured by Hennecke (BFM100/BFM150)
Box foaming process and equipment exhibit characteristics such as simple operation, compact and straightforward equipment structure, low investment, small footprint, and convenient maintenance. These features make it particularly suitable for small enterprises engaged in intermittent production of low-density block foam. However, its drawbacks are also quite evident: lower production efficiency, less favorable production environment, high concentration of emitted toxic gases on-site, necessitating the use of highly effective exhaust and toxic gas purification systems.
To enhance mixing efficiency, some companies have added several vertical and equidistant baffles to the inner walls of the mixing barrel. These baffles, combined with high-speed spiral-type agitators, facilitate high-speed mixing. This approach can to a certain extent reduce laminar flow effects in the mixing liquid and improve mixing efficiency. An example of this is our product, the SAB-BF3302. For the product's appearance and technical specifications, please refer to Picture 3.
Picture 3: Fully Automatic Box Foaming Machine (Sabtech Technology Limited)
This production line comes with both fully automatic computer control and manual control modes. It's suitable for producing flexible polyurethane foam with densities ranging from 10 to 60 kg/cm. Maximum foam output: 180L. Foam height: 1200mm. Mixing power: 7.5kW. Total power: 35kW.
2. Equipment for Open-Cell Foam Preparation
Open-cell polyurethane foam is a functional foam product developed in the 1980s. It possesses a high porosity, a distinct network structure, softness, breathability, and good mechanical strength. It finds wide application as excellent filtration and shock-absorption material in transportation, instrumentation, medical material filtration membranes, and as catalyst carriers in the chemical industry. Filling it into aircraft fuel tanks can suppress oil agitation and reduce the risk of explosions. Impregnating it with ceramic slurry and high-temperature sintering results in a novel open-cell ceramic filter material used in the metallurgical industry.
The preparation of open-cell polyurethane foam involves methods such as steam hydrolysis, alkaline soaking, and explosion. In industrial production, the explosion method is predominantly used. Initially, polyurethane foam of a specific pore size is prepared using the box foaming process. Subsequently, it's placed in dedicated explosion network equipment, filled with explosive gas, and ignited after completely filling the foam body. By utilizing the impact energy and high-temperature heat generated by the explosion parameters, the cell walls of the polyurethane foam are ruptured and fused onto the cell walls, forming a distinct network structure, as shown in Picture 4.
Picture 4: Clearly Networked Open-Cell Foam
Methods like steam hydrolysis or alkaline soaking are used to prepare open-cell foam. However, there are issues of low efficiency, poor quality, and environmental pollution with these methods. They are mainly employed for small-scale production such as laboratory sample testing. Large-scale production primarily uses the explosion method.
ATL Schubs GmbH, a German company, specializes in the research and development of polyurethane reticulated foam and manufactures the ReticulatusTM foam explosion machinery. The explosion chamber of the reticulated foam explosion equipment comes in two forms: cylindrical and rectangular. The former is suitable for cylindrical foam, while the latter is more versatile. It can be used not only for square foam but also for processing reticulated foam from cylindrical foam, as shown in Picture 5. The explosion chamber is constructed from high-quality 100mm-thick steel plates. Operation is controlled by a computer modem, offering features like automatic opening and closing, automatic locking, automatic operation, and automatic alerts. Additionally, remote program design and modification can be facilitated through data transmission sensors.
Picture 5: Polyurethane Foam Reticulation Processing Equipment (ATL Schubs)
During production, foam bodies measuring 3 to 6 meters in length that are intended for reticulation are pushed into the explosion chamber. The chamber's door is closed hydraulically, and the air inside the chamber is evacuated using a vacuum pump. Under computer control, a precise proportion of oxygen and hydrogen gases is introduced, and the gas mixture's ratio is mechanically adjusted based on factors such as foam sample type and network size requirements.
Sensors continuously monitor the process, ensuring that all process parameters are within the specified conditions before controlled detonation is initiated. The explosive force and flame intensity generated by the explosion penetrate through the entire foam body, creating a distinct network structure. After forming, the foam body is cooled, residual materials and waste gases are purged using nitrogen, and the pressure chamber can then be opened to retrieve the reticulated foam. The entire process takes approximately 8 to 10 minutes. The pore diameter of the reticulated foam falls within the range of 10 to 100 pores per inch (ppi) (Note: ppi refers to the number of pores within one inch).
The above provides some insight into the non-continuous production process of polyurethane flexible foam. I hope this information proves helpful to you.
When using a batch foam machine for polyurethane soft foam foaming, have you encountered the following situations?
1.Uneven and numerous foam pores,
2. Rough foam texture.
3. Chaotic pore sizes across the entire foam surface, with slight signs of large pores.
Issues like these are quite common. The main reason for the first issue is that the distance between the mixing impeller of the foam machine and the bottom of the mixing barrel is too great; the second issue is that the mixing blades are too short and narrow: the third issue is that the angle of the mixing blades is too large.
Many manufacturers who design and produce foam machines only understand the principles during the design process, without understanding the significant relationship between a different design in foam production and product quality. A reasonable and perfect mechanical design can only be gradually improved in actual work, and only experienced foamers can achieve this.
Here are some experiences we have had with machine modifications and upgrades, hoping they will be helpful:
First, the installation position of the mixing wheel should be as low as possible, closer to the bottom of the mixing barrel is better. In general, the distance between the lowest point of the mixing blade and the bottom of the mixing barrel should be around two centimeters
Second, the shape of the mixing blade should be fan-shaped, with a moderately wide edge. The advantage of being wide is that it increases the contact area with the liquid material, providing sufficient power and also balances the liquid material.
Third, the length of the mixing blade should also be as long as possible, leaving about three to four centimeters from the baffle inside the mixing barrel.
Fourth, the two edges of the mixing blade should be sloped, with the angle of inclination based on the width of one end and two centimeters difference on both sides. After the mixing blade is modified, proper operation is also crucial, especially the mixing speed. Most batch foam machines nowadays are equipped with high-speed timing frequency conversion devices. However, in actual production, this device is often unnecessary. The operating speed mainly depends on the amount of material in the mixing barrel. If there is a lot of material, the speed should be appropriately faster, and if there is less material, then the speed should be lower.
Beginners are concerned that if the settling plate is not adjusted properly, the liquid flowing out of the nozzle may cause front surging or back surging, affecting the foaming process. Within two minutes after starting the machine, the reaction speed gradually increases, sometimes requiring adjustments to the settling plate. Adjustments to the settling plate are more critical in low-density and high-moisture-content (MC) formulas.
TDI (Toluene Diisocyanate) flow rate can be calculated to correspond to the scale value, but it is recommended to actually measure the TDI flow rate during the first foaming. Flow rate is too important; if the flow rate is not accurate, everything else will be a mess. It's best to rely on the simplest and most intuitive method of measuring the flow rate.
When mixing powders, the mixed stone powder should be left overnight and production should start the next day. For ingredients containing melamine and stone powder, it is recommended to first mix melamine with polyether for a period of time before adding the stone powder.
Foam machine formulas with long mixing chamber in the machine head or more teeth on the stirring shaft usually have less amine and lower material temperature. Conversely, foam machine formulas with short mixing chamber in the machine head or fewer teeth on the stirring shaft usually have more amine and higher material temperature.
For the same formula, when switching between dual-spray swivel heads and single-spray swivel heads with similar nozzle cross-sectional areas, the requirements for mesh thickness and layers are similar.
For the calibration of minor material flow, one method is to measure the return flow of the minor material, and the other is to calibrate it by dividing the total amount used by the foaming time. When there is a significant difference between the two calibration methods, rely on the data from the second calibration method.
Formulas for high-quality soft foam are usually within an unstable range, such as a low TDI index, low water-to-MC ratio, low T-9 dosage, and low silicone oil dosage.
Contact Person: Wenky Lau
Contact Number: +86-15687268672
Email: sales1@alforu.cn
WhatsApp: +86 15687268672
Company Address: NO. 18 South Industry Road, Dongguan City, Guangdong Province China