End-to-end solutions from raw materials to production equipments for PU foam and mattress.
Sabtech Technology Limited is an expert when it comes to the production of quality rebonded foam machine. We are ISO 9001-compliant and have quality assurance systems conforming to this international standard. We maintain high levels of product quality and ensure proper management of each department such as development, procurement and production. We are also improving quality in the selection of suppliers.
Sabtech has gained many loyal customers around the world. We rank top in customer satisfaction in the industry. The trust, credibility, and loyalty that come from happy customers effectively help us build repeat sales and ignite positive recommendations about our products, bringing us more new customers. Our brand is getting greater market influence in the industry.
Quick response to customer's request is the guideline of service at Sabtech Technology Limited. Thus, we build up a service team capable of answering questions about delivery, customization, packaging, and warranty of rebonded foam machine.
Polyurethane foam(PU foam) primarily consist of polyurethane as their main component. The raw materials primarily include polyisocyanates and polyols, with the addition of various additives, the most crucial of which are a series of foaming agents related to the foaming process. These additives lead to the production of a significant amount of foam within the reaction product, resulting in polyurethane foam products. This article provides a brief overview of the raw materials used in producing PU foam and the foaming agents.
1.Polyisocyanates
The most commonly used polyisocyanates in the industrial production of polyurethane foams include toluene diisocyanate (TDI), polymethylene polyphenyl isocyanate (PAPI), diphenylmethane diisocyanate (MDI), and liquid MDI (L-MDI).
TDI
TDI is mainly used in the production of polyurethane flexible foams. MDI has higher reactivity than TDI, lower volatility, and some modified forms of MDI can be used as substitutes for TDI in the production of polyurethane flexible foams, including high-density polyurethane foam and the manufacturing of semi-rigid or microcellular polyurethane elastomers.
PAPI, also known as crude MDI or polymerized MDI, typically has an average molecular weight ranging from 30 to 400, with an NCO content of 31% to 32%. In the field of foam plastics, PAPI and modified PAPI are primarily used to produce various polyurethane rigid foams, with some also used in the production of high-rebound flexible foams, integral skin foams, and semi-rigid foams. PAPI can be mixed with TDI to manufacture cold-cure, high-rebound foam plastics.
2.Polyether and Polyester Polyols
2.1Polyether Polyols
Polyether polyols used for producing polyurethane flexible foams are generally long-chain, low-functionality polyethers. In the formulation of flexible foams, the functionality of polyether polyols is usually between 2 and 3, with an average molecular weight ranging from 2000 to 6500. Polyether triols are most commonly used in flexible foams, typically initiated with glycerol (propane-1,2,3-triol) and obtained through ring-opening polymerization with 1,2-epoxy propane or copolymerization with a small amount of ethylene oxide, with a molecular weight generally falling within the range of 3000 to 7000.
Polyether Polyols
High-activity polyether polyols are mainly used for high-rebound flexible foams and can be used in the production of semi-rigid foams and other foam products. Some polyether diols can be used as auxiliary materials, mixed with polyether triols in flexible foam formulations. Low unsaturation and high molecular weight polyether polyols are used for the production of soft foams, reducing the amount of TDI required.
Polyether polyols used in rigid foam formulations are generally high-functionality, high hydroxyl value polyether polyols to achieve sufficient cross-linking and rigidity. The hydroxyl value of polyether polyols for rigid foam formulations is typically in the range of 350 to 650 mg KOH/g, with an average functionality of 3 or higher. Rigid foam formulations often use a combination of two types of polyether polyols, with an average hydroxyl value of around 4000 mg KOH/g.
Semi-rigid foam formulations often use some high molecular weight polyethers, especially high-activity polyether triols, and some high-functionality, low molecular weight polyether polyols from rigid foam formulations.
2.2Polyester Polyols
Low-viscosity aliphatic polyester polyols, such as hexanediol adipate diols with a hydroxyl value of approximately 56 mg KOH/g, or slightly branched polyester polyols, can be used for producing polyester-based polyurethane flexible foams. Polyester polyols have high reactivity. Currently, block polyurethane foam made from polyester is only used in a few fields such as auxiliary materials for clothing.
Polyester Polyols
Aromatic polyester polyols, synthesized from dicarboxylic acids (such as phthalic anhydride, terephthalic acid, etc.) and small-molecule diols (such as ethylene glycol, etc.) or polyols, are used to produce polyurethane rigid foams and polyisocyanurate rigid foams. Lower hydroxyl value polyester polyols derived from phthalic anhydride can also be used for high-rebound flexible foams, integral skin foams, semi-rigid foams, and non-foam polyurethane materials.
2.3Polymer Polyols
Polymer polyols, including rigid styrene, acrylonitrile homopolymers, copolymers, and grafted polymers, act as organic "fillers" to enhance load-bearing performance. Polymer polyols are used in the production of high-hardness flexible block foams, high-rebound foams, thermoplastic flexible foams, semi-rigid foams, self-skinning foams, and reaction injection molded (RIM) products. They can reduce product thickness, lower foam density to reduce costs, increase foam plastic cell opening, and impart flame retardant properties to the products.
Polymer Polyols
Polyurea polyols (PHD dispersions) are a special class of polymer-modified polyols used in high-rebound flexible foams, semi-rigid foams, and soft foams, but their presence in the market is limited.
There are also some special polyols used for the production of polyurethane foams, such as vegetable oil-based polyols, rosin-based polyester polyols, and polymer polyesters. These are not described in detail in this article.
Cold Cure
A process for seat foam production, which produces high resilience foam (referred to as HR foam).
During this process, the mold temperature is generally between 50-70 degrees Celsius; the polyether molecular weight is typically between 2500-6500, and the ISO can be TDI/TM/MDI.
This process has high production efficiency, low energy consumption, and is currently widely used.
Pump Capacity
Used to check the stability of the metering pump flow output.
The current method for verifying pump capacity is as follows: at the set flow rate, shoot continuously 35 times, weigh each shot, then calculate the capacity. Based on the pump capacity, determine whether the metering pump needs repair or replacement. Generally, pump capacity is checked every three months.
Pump Linearity
A characterization of the correlation between the metering pump's speed and output.
Usually, five different speeds are selected for flow testing. The output of the metering pump at each speed is then obtained. If these five points align on a straight line, it indicates good linearity between the metering pump's speed and output.
NBT (New Blending Technology)
NBT stands for New Blending Technology.
The previous blending technology involved spraying and mixing one ISO with one POL to react and produce polyurethane foam. When adjusting process parameters with this method, only the POL/ISO mixing ratio and the casting weight could be adjusted, with no other adjustments possible.
NBT involves spraying and mixing one ISO with 2 or 3 groups of POLY materials to react and produce polyurethane foam. (Equipment requires a frequency converter)
NBT can adjust the following variables: formula moisture, formula solids content, formula index, casting weight, and other variables. This allows for greater process tolerance when manufacturing foams of different densities and hardnesses.
TPR (Timed Pressure Release)
TPR stands for Timed Pressure Release, also known as venting or pre-venting.
Typical TPR parameters are: venting starts around 90-120 seconds after mold closure, with the bag dropping down, venting for about 2 seconds, then the bag rising back up.
Common phenomena: Venting too early can result in tender products prone to tearing. Venting too late can lead to stiff products prone to shrinkage after demolding.
Initial Spray
At the start of normal pouring, the ISO and POLY nozzles are opened simultaneously, allowing the materials to mix in the mixing chamber and react to produce polyurethane foam.
If during pouring the ISO and POLY nozzles do not open simultaneously, the one that opens first will cause the material to flow out of the mixing chamber without reacting, resulting in unreacted material at the beginning of the foam. If polyether comes out first, the foam will be sticky and wet at the top (mild initial spraying), while if ISO comes out first, the foam will be crispy, locally thin (mild initial spraying), or have ISO spots (severe initial spraying).
Common phenomena: Another special case is when there is softness at the initially poured area, which could also be a form of initial spraying. This might be due to the component coming out first, causing the foam at the initial pour point to be soft.
Foaming Index
When ISO and POL react, if they react in the exact theoretical amounts, it's called stoichiometric reaction, and the foaming index is defined as 100.
Foaming Index = Actual ISO usage/Theoretical ISO usage * 100. Currently, the foaming index for seat foaming is generally between 90-105.
As the foaming index increases, the foam gradually becomes harder.
Index > 105, the product is prone to being brittle; Index < 85, the product is prone to closed-cell shrinkage.
In modern industrial production, polyurethane flexible foam play an important role in various fields such as furniture, automotive seats, and shoe insoles. However, the key technical control points for producing high-quality polyurethane flexible foam plastic products cannot be overlooked. Here are several key technical points in the production process:
Control of Toluene Diisocyanate (TDI):
The optimal isomeric ratio of TDI is 80/20. If this ratio is exceeded, it can lead to the formation of large and closed cells in the foam, prolonging the curing time. Particularly in the production of large block low-density foam products, an excessive isomeric ratio can delay heat release, potentially causing the foam center temperature to remain high for a long time, leading to carbonization and even ignition. If the isomeric ratio is too low, the foam product's density and resilience will decrease, and fine cracks may appear on the foam surface, resulting in poor process repeatability.
Addition of External Blowing Agents:
External blowing agents (water) not only reduce the density of the foam but also improve the softness of the product and help remove reaction heat. To prevent center carbonization in the foaming process of large block foam products, a certain amount of water is usually added. However, as the amount of water increases, the amount of catalyst should also increase correspondingly; otherwise, it may prolong the post-curing time of the foam. Generally, for every 5 parts increase in water, 0.2 to 0.5 parts of silicone oil should be added.
Catalyst Ratio:
Organic tin and tertiary amine catalysts are commonly used to control the NCO-OH and NCO-H2O reactions. By adjusting the ratio of different catalysts, the growth of polymer chains and the foaming reaction can be controlled. Under certain product densities, choosing the appropriate catalyst ratio can control the foam's open-cell rate, cell size, and void load value. Increasing the amount of organic tin catalyst can generally produce foams with smaller cell sizes, but excessive use may increase the closed-cell rate. It is necessary to determine the optimal catalyst dosage through experiments to achieve the best performance of foam products.
Foam Stabilizers:
The role of foam stabilizers is to reduce surface tension of the material, making the foam film wall elastic and preventing foam wall rupture until the molecular chain growth and cross-linking reactions lead to material solidification. Therefore, foam stabilizers play a critical role in the production of one-step polyether sponge and must be strictly controlled in usage.
Temperature Control:
The foam generation reaction is highly sensitive to temperature, and changes in material and foaming temperature will affect foaming operations and physical properties. Therefore, temperature control is one of the important conditions to ensure stable foaming processes. The material temperature is generally controlled at 20-25°C.
Stirring Speed and Time:
The stirring speed and time affect the amount of energy input during the foaming process. If stirring is uneven, a large number of bubbles may appear on the foam surface, leading to defects such as cracking. During mixing of Component A, the speed is 1000r/min; after Component B is added to Component A, the high-speed stirring speed is 2800-3500r/min for 5-8 seconds.
In summary, the key technologies for producing polyurethane flexible foam include controlling TDI, adding external blowing agents, adjusting catalyst ratios, using foam stabilizers, temperature control, and controlling stirring speed and time. Proper control of these technical parameters can ensure the production of stable quality and high-performance polyurethane flexible foam plastic products.
1. Basic Reactions
The formation of polyurethane foam involves two basic reactions: foaming reaction and polymerization reaction (also called gel reaction).
Foaming reaction: Isocyanate reacts with water to produce a reaction of di-substituted urea and carbon dioxide. The reaction equation is as follows:
2R-N=C=O + HOH → R-NH-CO-NH-R + CO2↑
The released carbon dioxide acts as the bubble core, causing the reaction mixture to expand, resulting in foam with an open-cell structure.
Polymerization reaction: The hydroxyl group in the polyether undergoes a stepwise polymerization reaction with isocyanate to form an aminoformate. The reaction equation is as follows:
R=N=C=O + R′-OH → R-NH-COO—R′
2. Polyols
Domestic block foam production uses 3-functionality, molecular weight 3000 (hydroxyl value 56) or 3500 (hydroxyl value 48, less commonly used) soft foam polyethers.
3. Polyisocyanates
The main polyisocyanate used is toluene diisocyanate (TDI). There are three main types of TDI industrial products: pure 2,4-TDI (or TDI100), TDI80/20, and TDI65/35. TDI80/20 has the lowest production cost and is the most widely used variety in industrial applications.
The molecular weight of TDI is 174, with two isocyanate groups (-N=C=O) having a molecular weight of 84. Therefore, the isocyanate content in TDI is 48.28%.
The amount of TDI used has a significant impact on foam properties. In foam formulations, the excess of TDI is expressed as the isocyanate index, which is the ratio of actual usage to theoretical calculated amount. When producing soft foam, the index is generally 105-115 (100 is equal to the theoretical calculated amount). Within this range, as the TDI index increases, the foam hardness increases, tear strength decreases, tensile strength decreases, and elongation at break decreases. If the TDI index is too high, it can lead to large and closed cells, long maturation times, and foam burning; if the TDI index is too low, it may lead to cracking, poor rebound, low strength, and significant compression permanent deformation.
4. Blowing Agents
Water reacting with TDI to produce carbon dioxide is the main blowing agent used in soft foam foaming. Increasing the amount of water in the formulation will increase the urea content, increase foam hardness, decrease foam density, and reduce foam load-bearing capacity. However, TDI reacts with water to produce a large amount of heat. If the water content is too high, it can cause the foam to burn or ignite.
Methylene chloride is a physical blowing agent with a boiling point of 39.8°C. It is a non-flammable gas that can vaporize during foaming, reducing foam density and hardness. The amount of methylene chloride added should prevent the foam from burning while ensuring that too much does not remove too much heat, affecting foam curing. The amount of methylene chloride used is limited.
5. Catalysts
The main role of catalysts is to adjust the speed of foaming and gel reactions to achieve a good balance.
Triethylenediamine (A33, a 33% solution of diisopropyl ether or dipropylene glycol) is the most important tertiary amine catalyst in soft foam production. It is 60% effective in promoting the reaction between isocyanate and water, i.e., foaming reaction, and 40% effective in promoting the reaction between hydroxyl and isocyanate, i.e., gel reaction.
Dibutyltin dilaurate (A-1) is a general-purpose tertiary amine catalyst for soft foam. It is 80% effective in promoting foaming reaction and 20% effective in promoting gel reaction. It is often used in combination with triethylenediamine.
Improper use of amine catalysts can have a significant impact on the product. Too much amine can cause:
(1) Short reaction time, rapid increase in initial viscosity, and excessive smoking during foaming.
(2) Foam cracking. Too little amine will result in slow initiation speed, affecting foam height.
Dibutyltin dilaurate is the most commonly used organic tin catalyst, which is very easy to hydrolyze and oxidize in the presence of water and tertiary amine catalysts in polyether mixtures.
The lower the foam density, the narrower the adjustable range of dibutyltin dilaurate. The effect of tin dosage on foam is as follows:
Too little dosage: Foam cracking.
Too much dosage: Rapid increase in viscosity, foam forming closed cells and shrinking, forming skins on the top and sides.
6. Foam Stabilizers (also called Silicone Oils)
Foam stabilizers reduce the surface tension of the foam system mixture, thereby stabilizing the bubbles, preventing foam collapse, and controlling the size and uniformity of voids.
Increasing the amount of silicone oil from the minimum amount to an appropriate level can produce well-opened foam plastics. When the amount is too high, the closed-cell rate of the foam increases.
7. Other Influencing Factors
In addition to the formulation, process parameters, and environment also have a certain impact on foam properties.
Raw material temperature: Under relatively normal ambient temperatures (20-28°C), the raw material temperature is controlled at 25±3°C, preferably within a range of ±1°C. It can also be controlled within the range of 28-30°C.
The effect of temperature increase or decrease on the speed of foaming and gel reactions varies. An increase in temperature results in a much greater increase in polymerization reaction compared to foaming reaction. Catalysts need to be adjusted for temperature changes.
For the same formulation, using the same amount of blowing agent, foam density is also related to altitude. In high-altitude areas, foam density noticeably decreases.
The production of block-shaped soft foam typically utilizes the batch foam machine foaming process, a gap-type production method. This method evolved from manual foaming in laboratories. The process involves immediately pouring the mixed reaction materials into an open mold resembling a wooden or metal box, hence the name "boxed foam." The molds (boxes) for boxed foam can be rectangular or cylindrical. To prevent the foam block from forming a domed top, a floating cover plate can be placed on the top of the foam during foaming. The cover plate stays closely attached to the top of the foam and gradually moves upward as the foam rises.
The main equipment for boxed foam production includes: 1) Electric-mechanical stirrer, mixing barrel; 2) Mold box; 3) Weighing tools such as scales, platform scales, measuring cups, glass syringes, and other measuring devices; 4) Stopwatch for controlling mixing time. A small amount of mold release agent is applied to the inner walls of the box to facilitate easy removal of the foam.
The advantages of producing soft foam using the boxed foam method include: low equipment investment, small footprint, simple equipment structure, easy and convenient operation and maintenance, and flexible production. Some small and underfunded domestic and township enterprises use this method to produce polyurethane soft foam. Boxed foam molding is a non-continuous production method for soft foam, so the production efficiency is lower than continuous methods, and the equipment is mostly manually operated, resulting in higher labor intensity. Production capacity is limited, and there is a greater loss in cutting foam plastics. The process parameters for boxed foam should be controlled within a certain range because even with the same formula, the foam properties may not be the same when different process parameters are used. The raw material temperature should be controlled at (25±3) degrees Celsius, mixing speed at 900 to 1000r/min, and mixing time at 5 to 12 seconds. The mixing time of the polyether and additives mixture before adding TDI can be flexibly adjusted depending on the situation, and after adding TDI, a mixing time of 3 to 5 seconds is sufficient, with the key being thorough mixing after TDI addition.
During boxed foam molding, attention should be paid to the following aspects:
1) Prepare before production, including material temperature and machine equipment inspection;
2) Measure as accurately as possible;
3) Control the mixing time appropriately;
4) Pour the mixed material liquid quickly and steadily, avoiding excessive force;
5) Ensure the box is placed steadily, with the bottom paper flat, to avoid uneven material flow during pouring;
6) When the foam rises, gently press the cover to ensure the foam rises smoothly;
7) Additives should be used as specified, and pre-mixed materials should not be left for too long.
Three types of foam equipment have emerged in boxed foam molding. Initially, various raw materials were weighed into a container according to the formula, mixed with a high-speed mixer, and poured into the box mold for foaming and shaping. This method often resulted in residue in the mixing container. An improved method used a metering pump to transport the raw materials to the mixing barrel for uniform mixing. A mechanical device automatically closed the bottom of the barrel, and compressed air was used to press the material into the foaming box for shaping. Both of these methods could create eddies due to the rapid influx of materials into the box, which might cause defects or depressions in the foam products. The most reasonable boxed foam device is to place a bottomless mixing barrel directly in the center of the foaming box. A metering pump delivers the various raw materials needed for foaming into the mixing barrel. After mixing for a few seconds, the lifting device raises the mixing barrel out of the foaming box, allowing the foaming material to flow smoothly over the entire box bottom. This prevents foam cracking due to material eddies, and ensures relatively uniform height throughout the foam.
A pressure device can be added to the expanding foam material to produce flat-topped foam, reducing waste during cutting. This device is suitable for the production of polyether-type polyurethane soft foam and high rebound soft block foam. For polyvinyl acetate polyurethane blocks, this method cannot be used due to the high viscosity of the material, and continuous methods are generally employed.
Contact Person: Wenky Lau
Contact Number: +86-15687268672
Email: sales1@alforu.cn
WhatsApp: +86 15687268672
Company Address: NO. 18 South Industry Road, Dongguan City, Guangdong Province China