حلول شاملة بدءًا من المواد الخام وحتى معدات إنتاج رغوة البولي يوريثان والمراتب.
Sabtech شركة Technology Limited مكرسة لتقديم الشركات المصنعة لآلات الرغوة لعملائنا. تم تصميم المنتج لدمج أعلى مستوى من المواصفات الفنية ، مما يجعل نفسه الأكثر موثوقية في السوق التنافسية. علاوة على ذلك ، بينما نلجأ إلى تقديم أحدث التقنيات ، اتضح أنها أكثر فعالية من حيث التكلفة ودائم. من المتوقع أن تحافظ على المزايا التنافسية.
الفرق الأكبر بين Sabtech وغيرها من العلامات التجارية هو التركيز على المنتجات. نحن نعد لدفع 100% الاهتمام لمنتجاتنا. يقول أحد عملائنا: "تفاصيل المنتجات لا تشوبها شائبة" ، وهو أعلى تقييم لنا. نظرًا لاهتمامنا الدقيق ، يتم قبول منتجاتنا وإشادتها من قبل العملاء في جميع أنحاء العالم.
Sabtech توفر شركة Technology Limited عينات للعملاء، بحيث لا يحتاج العملاء إلى القلق بشأن جودة المنتجات مثل الشركات المصنعة لآلات الرغوة قبل تقديم الطلبات. بالإضافة إلى ذلك ، من أجل تلبية احتياجات العملاء ، فإننا نقدم أيضًا خدمة مخصصة لإنتاج المنتجات حسب حاجة العملاء.
بالنسبة للعديد من المؤسسات الصغيرة، على الرغم من أن خط الإنتاج المستمر لرغوة البولي يوريثان المرنة يوفر إنتاجًا عاليًا، إلا أن التكاليف مرتفعة جدًا أيضًا، وقد لا يتطلب السوق المستهدف مثل هذه الكميات الكبيرة. ونتيجة لذلك، أصبحت خطوط الإنتاج غير المستمرة لرغوة البولي يوريثان المرنة هي الخيار المفضل لديهم. فيما يلي مقدمة لخط الإنتاج غير المستمر لرغوة البولي يوريثان المرنة:
1. معدات عملية رغوة الصندوق
لقد تم تطوير عملية ومعدات رغوة الصناديق كتقنية جديدة لتلبية احتياجات منشآت إنتاج رغوة البولي يوريثان صغيرة الحجم. وهو يعتمد على تقنيات إنتاج الرغوة المخبرية واليدوية، وهي في الأساس نسخة مطورة من أساليب الرغوة المختبرية. لقد مرت هذه العملية بثلاث مراحل تطوير. في البداية، تم وزن جميع المواد المكونة بالتسلسل وإضافتها إلى حاوية أكبر، تليها إضافة TDI. بعد الخلط السريع، يُسكب الخليط على الفور في قالب صندوقي كبير. كانت هذه الطريقة ذات كثافة عمالية عالية، وتنبعث منها تركيزات عالية من الغازات السامة، وتشكل مخاطر صحية كبيرة على المشغلين. بالإضافة إلى ذلك، فإن تناثر المواد أثناء الصب من شأنه أن يجذب كمية كبيرة من الهواء، مما يؤدي إلى تكوين فقاعات هواء كبيرة داخل هيكل الرغوة وحتى التسبب في تشقق الرغوة. علاوة على ذلك، كانت هناك كمية كبيرة من النفايات المتبقية، مما أدى إلى نفايات مادية كبيرة وارتفاع تكاليف الإنتاج
وفي وقت لاحق، تم دمج مضخات القياس لنقل المواد إلى برميل الخلط بقاع يفتح تلقائيًا. بعد الخلط بسرعة عالية، سيتم فتح اللوحة السفلية لبرميل الخلط، وسيقوم الهواء المضغوط بطرد المواد بسرعة إلى القالب لتوسيع الرغوة. ومع ذلك، عانى هذا النهج من هياكل مسام الرغوة غير المستوية بسبب التدفق السريع للمواد، مما أدى إلى هياكل الرغوة الدوامة ومشاكل في الجودة مثل الشقوق على شكل هلال. المرحلة الثالثة من تحسين العملية هي جهاز رغوة الصندوق الذي يتم اعتماده في الغالب اليوم. مبدأ الرغوة الأساسي موضح في الصورة
(أ) قياس المواد الخام وخلطها (ب) الرغوة (ج) ترتفع الرغوة إلى الحد الأقصى للارتفاع
1 - برميل خلط المواد القابل للرفع؛ 2 - قالب صندوق قابل للتجميع؛ 3 - اللوحة العلوية للصندوق العائم؛ 4- جسم فوم
الصورة 1: رسم تخطيطي لمبدأ رغوة الصندوق
تتكون معدات الإنتاج الصناعي لرغوة الصناديق بشكل أساسي من خزانات المواد الخام، ووحدات مضخة القياس، وبراميل الخلط القابلة للرفع، وقوالب الصناديق الخشبية القابلة للتجميع. كما هو موضح في الرسم التخطيطي لمعدات رغوة الصندوق المصنعة بواسطة Hennecke (الصورة 2)، يتم تخزين المواد الخام الرغوية في خزانات ويتم تنظيمها بواسطة أجهزة التحكم للوصول إلى نطاق درجة حرارة المعالجة المطلوبة، وعادة ما يتم الاحتفاظ بها عند درجة حرارة 23°C ± 3°C. بالتتابع، تقوم مضخة القياس بحقن البولي إيثر بوليول، المحفز، المواد الخافضة للتوتر السطحي، عوامل الرغوة، إلخ، في أسطوانة الخلط لمدة التحريك من 30 إلى 60 دقيقة. بعد ذلك، وفقًا للصيغة، يتم إدخال TDI، إما مباشرة أو من خلال حاوية وسيطة بمفتاح سفلي. الخلط الفوري يتبع إضافة TDI. اعتمادًا على المواد والتركيبة، يتم التحكم في سرعة التحريك عادةً عند 900 إلى 1000 دورة في الدقيقة (r/min)، مع وقت تحريك يتراوح من 3 إلى 8 ثوانٍ. بعد التحريك، يتم رفع برميل الخلط بسرعة. الجزء السفلي من البرميل يفتقر إلى قاع ويتم وضعه على اللوحة السفلية لصندوق القالب عند خفضه، باستخدام حلقة إغلاق عند الحافة السفلية للبرميل لمنع تسرب المواد.
عند الرفع، يمكن نشر الملاط الممزوج جيدًا مباشرة وتفريقه على اللوحة السفلية لقالب الصندوق، مما يسمح بارتفاع الرغوة الطبيعية. لمنع تكوين سطح مقبب على الجزء العلوي أثناء الرغوة، تم تجهيز لوحة القالب العلوية التي تتوافق مع مساحة القالب وتسمح بحركة الحد الأعلى. يتكون صندوق القالب بشكل أساسي من ألواح خشبية صلبة، مع اللوحة السفلية المثبتة على عربة نقل القالب المتحركة. جميع الألواح الجانبية الأربعة قابلة للتجميع، وتتميز بآليات قفل سريعة الفتح والإغلاق. الجوانب الداخلية للألواح مطلية بعوامل تحرير قائمة على السيليكون أو مبطنة بمادة فيلم البولي إيثيلين لمنع الالتصاق. بعد 8 إلى 10 دقائق من النضج القسري داخل الصندوق، يتم فتح الألواح الجانبية لصندوق القالب، مما يسمح بإزالة الرغوة المرنة على شكل كتلة. وبعد 24 ساعة إضافية من النضج، يمكن أن تخضع كتل الرغوة هذه للقطع وإجراءات ما بعد المعالجة الأخرى.
1 - خزان المواد الخام. 2 - وحدة مضخة القياس. 3 - خزانة التحكم. 4 - خلط البرميل مع جهاز الرفع. 5 - صندوق الرغوة. 6 - المنتج النهائي الرغوي؛ 7- اللوحة العائمة
الصورة 2: معدات رغوة الصناديق المصنعة بواسطة Hennecke (BFM100/BFM150)
تتميز عملية ومعدات رغوة الصندوق بخصائص مثل التشغيل البسيط، وهيكل المعدات المدمج والمباشر، والاستثمار المنخفض، والبصمة الصغيرة، والصيانة المريحة. هذه الميزات تجعلها مناسبة بشكل خاص للمؤسسات الصغيرة العاملة في الإنتاج المتقطع لرغوة الكتل منخفضة الكثافة. ومع ذلك، فإن عيوبها واضحة أيضًا: انخفاض كفاءة الإنتاج، وبيئة إنتاج أقل ملاءمة، والتركيز العالي للغازات السامة المنبعثة في الموقع، مما يستلزم استخدام أنظمة تنقية الغازات السامة والعوادم عالية الفعالية.
لتعزيز كفاءة الخلط، أضافت بعض الشركات عدة حواجز رأسية ومتساوية البعد إلى الجدران الداخلية لبرميل الخلط. هذه الحواجز، جنبا إلى جنب مع المحرضات الحلزونية عالية السرعة، تسهل الخلط عالي السرعة. يمكن لهذا النهج أن يقلل إلى حد ما من تأثيرات التدفق الصفحي في سائل الخلط ويحسن كفاءة الخلط. مثال على ذلك هو منتجنا SAB-BF3302. لمعرفة مظهر المنتج ومواصفاته الفنية، يرجى الرجوع إلى الصورة 3.
الصورة 3: آلة تعبئة العلب الأوتوماتيكية بالكامل (Sabtech Technology Limited)
يأتي خط الإنتاج هذا مزودًا بكل من التحكم الآلي الكامل بالكمبيوتر وأوضاع التحكم اليدوي. إنها مناسبة لإنتاج رغوة البولي يوريثان المرنة بكثافات تتراوح من 10 إلى 60 كجم/سم. الحد الأقصى لإخراج الرغوة: 180 لتر. ارتفاع الرغوة: 1200 مم. قوة الخلط: 7.5 كيلو واط. الطاقة الإجمالية: 35 كيلو واط.
2. معدات تحضير الرغوة ذات الخلية المفتوحة
رغوة البولي يوريثان ذات الخلية المفتوحة هي منتج رغوي وظيفي تم تطويره في الثمانينيات. إنها تمتلك مسامية عالية، بنية شبكية متميزة، ليونة، تهوية، وقوة ميكانيكية جيدة. إنه يجد تطبيقًا واسعًا كمواد ترشيح ممتازة وامتصاص الصدمات في وسائل النقل، والأجهزة، وأغشية ترشيح المواد الطبية، وكحاملات محفزة في الصناعة الكيميائية. إن ملئه في خزانات وقود الطائرات يمكن أن يمنع تقليب الزيت ويقلل من خطر الانفجارات. يؤدي تشريبه بملاط السيراميك والتلبيد بدرجة حرارة عالية إلى إنتاج مادة مرشح سيراميكية مفتوحة الخلية جديدة تستخدم في الصناعة المعدنية.
يتضمن تحضير رغوة البولي يوريثان ذات الخلية المفتوحة طرقًا مثل التحلل المائي بالبخار والنقع القلوي والانفجار. في الإنتاج الصناعي، يتم استخدام طريقة الانفجار في الغالب. في البداية، يتم تحضير رغوة البولي يوريثان ذات حجم مسام محدد باستخدام عملية الرغوة الصندوقية. وبعد ذلك، يتم وضعها في معدات شبكة الانفجار المخصصة، ويتم ملؤها بالغاز المتفجر، ويتم إشعالها بعد ملء الجسم الرغوي بالكامل. من خلال الاستفادة من طاقة الصدم والحرارة المرتفعة الناتجة عن معاملات الانفجار، تتمزق جدران خلايا رغوة البولي يوريثان وتندمج على جدران الخلايا، لتشكل بنية شبكية متميزة، كما هو موضح في الصورة 4.
الصورة 4: رغوة الخلية المفتوحة المتصلة بالشبكة بشكل واضح
تُستخدم طرق مثل التحلل المائي بالبخار أو النقع القلوي لتحضير رغوة الخلية المفتوحة. ومع ذلك، هناك قضايا انخفاض الكفاءة، وسوء الجودة، والتلوث البيئي مع هذه الأساليب. يتم استخدامها بشكل رئيسي في الإنتاج على نطاق صغير مثل اختبار العينات المعملية. يستخدم الإنتاج على نطاق واسع في المقام الأول طريقة الانفجار.
شركة ATL Schubs GmbH، وهي شركة ألمانية، متخصصة في البحث والتطوير للرغاوي الشبكية من مادة البولي يوريثان وتقوم بتصنيع آلات تفجير الرغوة ReticulatusTM. غرفة الانفجار لمعدات تفجير الرغوة الشبكية تأتي في شكلين: أسطواني ومستطيل. الأول مناسب للرغوة الأسطوانية، بينما الأخير أكثر تنوعًا. يمكن استخدامه ليس فقط للرغوة المربعة ولكن أيضًا لمعالجة الرغوة الشبكية من الرغوة الأسطوانية، كما هو موضح في الصورة 5. غرفة الانفجار مصنوعة من صفائح فولاذية عالية الجودة بسمك 100 ملم. يتم التحكم في التشغيل عن طريق مودم الكمبيوتر، مما يوفر ميزات مثل الفتح والإغلاق التلقائي، والقفل التلقائي، والتشغيل التلقائي، والتنبيهات التلقائية. بالإضافة إلى ذلك، يمكن تسهيل تصميم البرنامج وتعديله عن بعد من خلال أجهزة استشعار نقل البيانات.
الصورة 5: معدات معالجة شبكية رغوة البولي يوريثان (ATL Schubs)
أثناء الإنتاج، يتم دفع الأجسام الرغوية التي يتراوح طولها من 3 إلى 6 أمتار والمخصصة للشبكات إلى غرفة الانفجار. يتم إغلاق باب الغرفة هيدروليكيًا، ويتم إخلاء الهواء داخل الغرفة باستخدام مضخة التفريغ. تحت التحكم بالكمبيوتر، يتم إدخال نسبة دقيقة من غازي الأكسجين والهيدروجين، ويتم ضبط نسبة خليط الغاز ميكانيكيًا بناءً على عوامل مثل نوع عينة الرغوة ومتطلبات حجم الشبكة
تقوم أجهزة الاستشعار بمراقبة العملية بشكل مستمر، مما يضمن أن تكون جميع معلمات العملية ضمن الظروف المحددة قبل بدء التفجير المتحكم فيه. القوة المتفجرة وشدة اللهب الناتجة عن الانفجار تخترق الجسم الرغوي بأكمله، مما يخلق بنية شبكية متميزة. بعد التشكيل، يتم تبريد جسم الرغوة، ويتم تطهير المواد المتبقية وغازات النفايات باستخدام النيتروجين، ويمكن بعد ذلك فتح غرفة الضغط لاسترداد الرغوة الشبكية. تستغرق العملية برمتها حوالي 8 إلى 10 دقائق. يقع قطر مسام الرغوة الشبكية ضمن نطاق 10 إلى 100 مسام في البوصة (ppi) (ملاحظة: تشير ppi إلى عدد المسام في بوصة واحدة).
ما ورد أعلاه يوفر نظرة ثاقبة لعملية الإنتاج غير المستمر لرغوة البولي يوريثان المرنة. آمل أن تكون هذه المعلومات مفيدة لك.
هناك العديد من الأسباب التي تؤدي إلى تشقق رغوة البولي يوريثان، بما في ذلك العوامل الكيميائية والميكانيكية. أثناء الإنتاج، من المهم التوقف والتفتيش، والتأكد من القضاء على ظاهرة التشقق. فيما يلي بعض الأفكار التي قمنا بتلخيصها استنادًا إلى سنوات من الخبرة الإنتاجية، على أمل أن تلهم الجميع.
1. التغييرات المفاجئة
يمكن أن تؤدي التغييرات المفاجئة في سرعة الناقل، أو الاختلافات في استخدام المحفز، أو التشغيل غير المنتظم للناقل إلى تشقق الرغوة. قم بتعديل الأوضاع المذكورة أعلاه بعناية وتدريجياً. يمكن أن يؤدي التغيير الكبير في سرعة الناقل إلى حدوث شقوق كبيرة في كتل الرغوة.
2 فيلم البولي ايثيلين
إذا توقف الفيلم عن الحركة لأي سبب من الأسباب، فسوف تتلامس الرغوة مع السطح الثابت، مما يؤدي إلى التشقق. في حالة حدوث هذا الموقف، قم بفحص بكرة لف الآلة وافحص فصل الفيلم في منطقة المعالجة.
3 تشكل الرغوة حول مواد معينة
تميل الرغوة إلى التكون حول بعض المواد، وخاصة في مجرى التغذية، مما قد يتسبب بسهولة في حدوث تشققات.
قبل الإنتاج، تأكد من عدم وجود أي بقايا أو حطام متبقي في مجموعة رأس الخلط وخرطوم التغذية وأنبوب التفريغ.
4 أمين مفرط
عندما لا يكون هناك ما يكفي من أوكتوات القصدير، فإن الأمين الزائد يمكن أن يؤدي إلى نفس التأثير ويسرع من وقت الارتفاع. ولذلك يجب تخفيض جرعة الأمين.
5 أوكتوات القصدير غير كافية
بسبب تفاعل الرغوة الأسرع مقارنة بتفاعل البلمرة، قد يتدفق جزء من الرغوة، مما يؤدي إلى حدوث شقوق. لذلك، يجب زيادة كمية الأوكتوات القصديرية.
6 زيت السيليكون
تصبح الرغوة غير مستقرة وعرضة للتمزق، مما قد يؤدي إلى تكوين "انخفاضات" على الرغوة، لذلك من الضروري زيادة جرعة زيت السيليكون.
7 بنية فقاعات الهواء الصغيرة
يمكن أن تتسبب جدران الرغوة الرقيقة الناتجة عن الرغوة في حدوث تشققات. لمعالجة هذه المشكلة بشكل شامل: قم بتقليل محتوى الهواء، أو تقليل سرعة رأس الخلط، أو زيادة ضغط رأس الخلط. ومن الضروري أيضًا تغيير جرعة محفز الأوكتات القصديرية.
شروط الاختبار:
1. يتم أخذ الرغوة السريعة من مركز الرغوة، في حين يتم أخذ عينات الرغوة المقولبة من الجزء المركزي أو لاختبار العينة بأكملها.
2. يجب أن تنضج الرغوة المصنعة حديثا لمدة 72 ساعة في حالتها الطبيعية قبل أخذ العينات. يجب وضع العينات في بيئة درجة حرارة ورطوبة ثابتة (حسب GB/T2918: 23 ± 2 ℃ ، الرطوبة النسبية 50 ± 5%).
الاستعباد : الكثافة = الكتلة (كجم) / الحجم (م3)
Ardالحداد : انحراف حمل المسافة البادئة (ILD)، انحراف حمل الضغط (CLD)
والفرق الرئيسي بين طريقتي الاختبار هاتين هو منطقة تحميل البلاستيك الرغوي. في اختبار ILD، يتم تعريض العينة إلى مساحة مضغوطة تبلغ 323 سم2، بينما في CLD يتم ضغط العينة بأكملها. هنا، سنناقش فقط طريقة اختبار ILD.
في اختبار ILD، يبلغ حجم العينة 38*38*50 مم، بقطر رأس اختبار 200 مم (مع زاوية مستديرة R = 10 على الحافة السفلية)، ولوحة دعم بفتحات 6 مم متباعدة 20 مم. سرعة تحميل رأس الاختبار هي (100 ± 20) مم/دقيقة. في البداية، يتم تطبيق ضغط قدره 5 نيوتن كنقطة الصفر، ثم يتم ضغط العينة إلى 70٪ من سمكها عند نقطة الصفر، ويتم تفريغها بنفس السرعة. ويتكرر هذا التحميل والتفريغ ثلاث مرات كالتحميل المسبق، ثم يتم ضغطه على الفور بنفس السرعة. سمك الضغط هو 25 ± 1% و 65 ± 1%. بعد الوصول إلى التشوه، استمر في ذلك 30 ± 1s وتسجيل قيمة المسافة البادئة النسبية. القيمة المسجلة هي صلابة المسافة البادئة عند مستوى الضغط هذا.
بالإضافة إلى ذلك، 65% ILD / 25% ILD = نسبة الضغط، وهي مقياس لراحة الرغوة.
قوة الشد والاستطالة عند الكسر : يشير إلى الحد الأقصى لإجهاد الشد المطبق أثناء اختبار الشد حتى الكسر، ونسبة استطالة العينة عند الكسر.
قوة الشد = الحمل عند الكسر / مساحة المقطع العرضي الأصلي للعينة
الاستطالة عند الكسر = (مسافة الكسر - المسافة الأصلية) / المسافة الأصلية * 100%
قوة الدموع : يقيس مقاومة المادة للتمزق من خلال تطبيق قوة تمزيق محددة على عينة ذات شكل محدد.
حجم العينة: 150*25*25 مم (GB/T 10808)، مع اتجاه سمك العينة باعتباره اتجاه ارتفاع الرغوة. يتم إجراء شق بطول 40 مم على طول اتجاه السُمك (اتجاه ارتفاع الرغوة) في وسط أحد طرفي العينة. قم بقياس السماكة على طول اتجاه سماكة العينة، ثم افتح العينة وقم بتثبيتها في جهاز الاختبار. قم بتطبيق الحمل بسرعة 50-20 مم/دقيقة، باستخدام شفرة لقطع العينة، مع الحفاظ على الشفرة في الموضع المركزي. قم بتسجيل القيمة القصوى عندما تنكسر العينة أو تتمزق عند 50 مم.
قوة التمزق = قيمة القوة القصوى (N) / متوسط سمك العينة (سم)
وعادة ما يتم اختبار ثلاث عينات، ويتم أخذ الوسط الحسابي.
صمود : يقيس أداء ارتداد الرغوة من خلال السماح لقطر معين ووزن كرة فولاذية بالسقوط بحرية على سطح عينة البلاستيك الرغوي من ارتفاع محدد. تشير نسبة ارتفاع الارتداد إلى ارتفاع سقوط الكرة الفولاذية إلى مرونة الرغوة.
متطلبات الاختبار: حجم العينة 100*100*50 مم، يجب أن يكون اتجاه سقوط الكرة متسقًا مع اتجاه استخدام الرغوة. حجم الكرة الفولاذية هو ∮ 164 ملم، ووزن 16.3 جرام، وينخفض من ارتفاع 460 ملم.
معدل المرونة = ارتفاع ارتداد الكرة الفولاذية / ارتفاع سقوط الكرة الفولاذية * 100%
ملاحظة: يجب أن تكون العينات أفقية، ويجب تثبيت الكرة الفولاذية قبل إسقاطها (ثابتة)، ويتم اختبار كل عينة ثلاث مرات بفواصل زمنية تبلغ 20 ثانية، ويتم تسجيل القيمة القصوى.
ضغط تشوه دائم : في بيئة ثابتة، يتم الاحتفاظ بعينة المادة الرغوية تحت تشوه مستمر لفترة معينة، ثم يسمح لها بالتعافي لفترة من الوقت، مع ملاحظة تأثير التشوه على سمك العينة. تمثل نسبة الفرق بين السُمك الأولي والسمك النهائي للعينة إلى السُمك الأولي تشوه الضغط الدائم للبلاستيك الرغوي.
التشوه الدائم بالضغط = (السُمك الأولي للعينة - السُمك النهائي للعينة) / السُمك الأولي للعينة * 100
مقاوم النار
VOC (المركبات العضوية المتطايرة)
I. مزايا تقنية رغوة البولي يوريثين في الموقع:
طريقة الرغوة في الموقع، رش (أو صب) طبقة عازلة من رغوة البولي يوريثان، يكون السطح ككل بدون طبقات، مما يقلل من فقدان الحرارة، مع كفاءة بناء عالية، وسهولة تلبية متطلبات الجودة، وتقليل إجراءات البناء، والقضاء على الحاجة للطلاءات المضادة للتآكل على أسطح الأنابيب.
II. مبدأ عملية بناء مادة البولي يوريثين الرغوية في الموقع:
مبدأ الرغوة البلاستيكية والرش والصب من رغوة البولي يوريثان هو أن بولي إيثر إيزوسيانات يمكن أن يخضع لتفاعل تكثيف متعدد لتشكيل أمين ميثاكريلات، والذي يمكن أن يولد إيثيل بولي أمينوميثيل المطلوب، والمعروف باسم بلاستيك رغوة البولي يوريثان. تتم إضافة المحفزات، وعوامل التشابك، وعوامل الرغوة، ومثبتات الرغوة، وما إلى ذلك، في وقت واحد أثناء التفاعل لتعزيز التفاعل الكيميائي وتحسينه.
يتم تقسيم هذه المواد الخام إلى مجموعتين، ويتم خلطها بالكامل، ثم يتم ضخها في مسدس رش خاص عن طريق مضخات القياس بالتناسب. يتم خلطها بالكامل ورشها على سطح خطوط الأنابيب أو المعدات في مسدس الرش أو خلاط الصب، وتتفاعل، وتشكل رغوة، وتشكل البلاستيك الرغوي في غضون 5-10 ثوانٍ، والتي بعد ذلك يتم علاجها وتصلبها.
III. طرق بناء مادة البولي يوريثان الرغوية في الموقع:
طريقة الرش: وفقا لهذه الصيغة، يتم تخزين مجموعتين من المحاليل في برميلين على التوالي. يتم ترشيح المواد إلى مضخة القياس، التي يتم تشغيلها بواسطة محرك هوائي، ويتم إدخالها إلى جسم البندقية من خلال أنبوب المواد. ينظم الهواء المضغوط المادة في غرفة الخلط، ويتم خلطها ثم رشها على خط الأنابيب أو المعدات لتكوين الرغوة والتشكيل.
طريقة الصب: يتم تخزين مجموعتي المحاليل المجهزة في براميل، ثم يتم ترشيحها إلى مضخة القياس، والتي يتم تشغيلها بواسطة محرك هوائي، ويتم إدخالها إلى خلاط الصب من خلال أنبوب المواد. يتم إدخال الهواء المضغوط إلى محرك الصب، مما يؤدي إلى تحريك عمود التحريك لخلط مجموعتي المواد، والتي يتم بعد ذلك حقنها في القالب من أجل الرغوة والتشكيل.
الاحتياطات اللازمة لبناء رغوة البولي يوريثين في الموقع:
حرك المادة في درجة حرارة الغرفة لتختلط وتتفاعل، ثم اسكبها بسرعة في المساحة التي يجب تشكيلها. أثناء البناء، التحكم في وقت رغوة التفاعل بحيث تكون المادة المختلطة بعد التحريك في حالة سائلة عند سكبها في الفجوة. أثناء عملية الرغوة، سيتم توليد قوى تمدد كبيرة، لذلك يجب عمل التعزيز المناسب للطبقة البينية أو القالب.
إن فهم المبادئ الكامنة وراء تفاعلات الرغوة أمر بالغ الأهمية. لإتقان الرغوة، يجب علينا أن نسعى جاهدين لإنشاء نموذج تفاعل الرغوة في أذهاننا باستخدام معادلات التفاعل الأربعة التالية. ومن خلال الإلمام بالاختلافات داخل النموذج، فإننا ننمي الحساسية التي تسمح لنا بفهم عملية تفاعل الرغوة بأكملها. يساعد هذا النهج في بناء قاعدة معارفنا ومهاراتنا المهنية في مجال رغوة البولي يوريثان. سواء كنا ندرس بشكل نشط مبادئ تفاعل الرغوة أو نستكشفها بشكل سلبي أثناء عملية الرغوة، فهي بمثابة وسيلة حيوية بالنسبة لنا لتعميق فهمنا للتركيبات وتعزيز مهاراتنا.
رد فعل 1
تي دي آي + بولي إيثر → يوريتان
رد فعل 2
تي دي آي + يوريتان → ايزوسيانورات
رد فعل 3
تي دي آي + ماء → اليوريا + ثاني أكسيد الكربون
رد فعل 4
تي دي آي + اليوريا → بيوريت (بوليوريا)
01: التفاعلان 1 و2 عبارة عن تفاعلات نمو متسلسلة، وتشكل السلسلة الرئيسية للرغوة. قبل أن تصل الرغوة إلى ثلثي ارتفاعها الأقصى، تستطيل السلسلة الرئيسية بسرعة، مع سيطرة تفاعلات نمو السلسلة داخل الرغوة. في هذه المرحلة، ونظرًا لانخفاض درجات الحرارة الداخلية نسبيًا، فإن التفاعلات 3 و4 ليست بارزة.
02: التفاعلان 3 و4 عبارة عن تفاعلات متشابكة تشكل تفرعات الرغوة. وبمجرد أن تصل الرغوة إلى ثلثي ارتفاعها الأقصى، ترتفع درجة الحرارة الداخلية، ويتكثف التفاعلان 3 و4 بسرعة. خلال هذه المرحلة، تكون التفاعلات من 1 إلى 4 قوية، مما يمثل فترة حرجة لتكوين خصائص الرغوة. يوفر التفاعلان 3 و4 الاستقرار والدعم لنظام الرغوة. يساهم التفاعل 1 في مرونة الرغوة، بينما يساهم التفاعلان 3 و4 في قوة شد الرغوة وصلابتها.
03: تسمى التفاعلات المنتجة للغاز بالتفاعلات الرغوية. توليد ثاني أكسيد الكربون هو تفاعل رغوي وتفاعل طارد للحرارة الأساسي في رغوة البولي يوريثان. في أنظمة التفاعل التي تحتوي على الميثان، يشكل تبخر الميثان تفاعل رغوي وعملية ماصة للحرارة.
04: التفاعلات التي تؤدي إلى تكوين مكونات الرغوة تعرف باسم تفاعلات الجيلاتين، وتشمل جميع التفاعلات باستثناء التفاعلات المنتجة للغاز. يتضمن ذلك تكوين اليوريثان واليوريا والإيزوسيانورات والبيوريت (البوليوريا) من التفاعلات من 1 إلى 4.
شخص الاتصال: وينكي لاو
رقم الاتصال: +86-15687268672
البريد الإلكتروني: sales1@alforu.cn
WhatsApp:86 15687268672
عنوان الشركة: NO. 18 طريق الصناعة الجنوبي، مدينة دونغقوان، مقاطعة قوانغدونغ الصينية