Soluciones integrales, desde materias primas hasta equipos de producción de espuma de PU y colchones.
Sabtech Technology Limited se dedica a ofrecer fabricantes de máquinas de espumado por lotes para nuestros clientes. El producto está diseñado para incorporar el más alto nivel de especificaciones técnicas, haciéndose el más confiable en el mercado competitivo. Además, a medida que recurrimos a introducir tecnologías de vanguardia, resulta ser más rentable y duradero. Se espera mantener las ventajas competitivas.
La mayor diferencia entre Sabtech y otras marcas es la concentración en los productos. Prometemos prestar 100% de atención a nuestros productos. Uno de nuestros clientes dice: 'Los detalles de los productos son impecable', que es la evaluación más alta de nosotros. Debido a nuestra meticulosa atención, nuestros productos son aceptados y elogiados por clientes de todo el mundo.
Sabtech Technology Limited proporciona muestras a los clientes, para que no tengan que preocuparse por la calidad de los productos, como los fabricantes de máquinas de espuma por lotes, antes de realizar los pedidos. Además, para satisfacer las necesidades de los clientes, también ofrecemos un servicio personalizado para producir productos según las necesidades de los clientes.
Para muchas empresas de pequeña escala, aunque la línea de producción continua de espuma flexible de poliuretano ofrece un alto rendimiento, los costos también son muy altos y es posible que el mercado objetivo no requiera cantidades tan grandes. Como resultado, las líneas de producción discontinuas de espuma flexible de poliuretano se han convertido en su opción preferida. La siguiente es una introducción a la línea de producción no continua de espuma flexible de poliuretano.:
1. Equipo de proceso de espuma de caja
El proceso y el equipo de espumado en caja se han desarrollado como una nueva tecnología para satisfacer las necesidades de las instalaciones de producción de espuma de poliuretano a pequeña escala. Se basa en técnicas de producción de espuma manuales y de laboratorio, esencialmente una versión mejorada de los métodos de producción de espuma de laboratorio. Este proceso ha pasado por tres etapas de desarrollo. Inicialmente, todos los materiales componentes se pesaron secuencialmente y se agregaron a un recipiente más grande, seguido de la adición de TDI. Después de mezclar rápidamente, la mezcla se vertió inmediatamente en un molde tipo caja grande. Este método requería una gran intensidad de mano de obra, emitía altas concentraciones de gases tóxicos y planteaba importantes riesgos para la salud de los operadores. Además, las salpicaduras de materiales durante el vertido arrastrarían una gran cantidad de aire, lo que provocaría la formación de grandes burbujas de aire dentro de la estructura de la espuma e incluso provocaría el agrietamiento de la espuma. Además, había una cantidad significativa de residuos sobrantes, lo que resultaba en un desperdicio sustancial de material y altos costos de producción.
Posteriormente, el proceso incorporó bombas dosificadoras para transportar los materiales a un barril mezclador con fondo de apertura automática. Después de mezclar a alta velocidad, la placa inferior del barril de mezcla se abriría y el aire comprimido expulsaría rápidamente el material al molde para expandir la espuma. Sin embargo, este enfoque adolecía de estructuras de poros de espuma desiguales debido al rápido flujo del material, lo que provocaba estructuras de espuma arremolinadas y problemas de calidad como grietas en forma de media luna. La tercera etapa de mejora del proceso es el dispositivo de espumado en caja que se adopta principalmente en la actualidad. Su principio fundamental de formación de espuma se ilustra en la imagen.
(a) Medición y mezcla de materias primas (b) espuma (c) La espuma se eleva hasta limitar la altura
1 - Barril de Mezcla de Material Elevable; 2 - Molde de Caja Ensamblable; 3 - Placa superior de caja flotante; 4 - Cuerpo de espuma
Imagen 1: Diagrama esquemático del principio de formación de espuma en caja
El equipo de producción industrial para la formación de cajas de espuma consta principalmente de tanques de materia prima, unidades de bomba dosificadora, barriles mezcladores elevables y moldes de cajas de madera ensamblables. Como se muestra en el diagrama esquemático del equipo de espumado en caja fabricado por Hennecke (Imagen 2), las materias primas espumantes se almacenan en tanques y se regulan mediante dispositivos de control para alcanzar el rango de temperatura de procesamiento requerido, que generalmente se mantiene a 23°C ± 3°C. Secuencialmente, la bomba dosificadora inyecta poliéter polioles, catalizador, tensioactivos, agentes espumantes, etc., en el cilindro mezclador durante un tiempo de agitación de 30 a 60 minutos. A continuación, según la formulación, se introduce el TDI, ya sea directamente o a través de un recipiente intermedio con interruptor de fondo. La mezcla inmediata sigue a la adición de TDI. Dependiendo de los materiales y la formulación, la velocidad de agitación generalmente se controla entre 900 y 1000 revoluciones por minuto (r/min), con un tiempo de agitación de 3 a 8 segundos. Después de agitar, se levanta rápidamente el barril de mezcla. La parte inferior del cilindro carece de fondo y se coloca sobre la placa inferior de la caja del molde al bajar, utilizando un anillo de sellado en el borde inferior del cilindro para evitar fugas de material.
Cuando se levanta, la lechada bien mezclada se puede esparcir y dispersar directamente en la placa inferior del molde de caja, permitiendo que la espuma suba de forma natural. Para evitar la formación de una superficie abovedada en la parte superior durante la formación de espuma, se equipa una placa de molde superior que coincide con el área del molde y permite un movimiento límite hacia arriba. La caja del molde se compone principalmente de paneles rígidos de madera, con la placa inferior fijada a un carro de transporte de molde móvil. Los cuatro paneles laterales son ensamblables y cuentan con mecanismos de bloqueo de apertura y cierre rápidos. Los lados internos de los paneles están recubiertos con agentes desmoldantes a base de silicona o revestidos con material de película de polietileno para evitar la adhesión. Después de 8 a 10 minutos de maduración forzada dentro de la caja, se abren los paneles laterales de la caja del molde, permitiendo la extracción de la espuma flexible en forma de bloque. Después de 24 horas adicionales de maduración, estos bloques de espuma pueden someterse a cortes y otros procedimientos de posprocesamiento.
1 - Tanque de Materia Prima; 2 - Unidad De Bomba Dosificadora; 3 - Gabinete de control; 4 - Barril Mezclador con Dispositivo Elevador; 5 - Caja de espuma; 6 - Producto acabado con espuma; 7 - Placa flotante
Imagen 2: Equipo de espumado en caja fabricado por Hennecke (BFM100/BFM150)
El proceso y el equipo de espumado en caja exhiben características tales como operación simple, estructura de equipo compacta y sencilla, baja inversión, tamaño reducido y mantenimiento conveniente. Estas características lo hacen particularmente adecuado para pequeñas empresas dedicadas a la producción intermitente de espuma en bloque de baja densidad. Sin embargo, sus desventajas también son bastante evidentes: menor eficiencia de producción, entorno de producción menos favorable, alta concentración de gases tóxicos emitidos en el sitio, lo que requiere el uso de sistemas de purificación de gases tóxicos y de escape altamente efectivos.
Para mejorar la eficiencia de la mezcla, algunas empresas han agregado varios deflectores verticales y equidistantes a las paredes internas del barril de mezcla. Estos deflectores, combinados con agitadores tipo espiral de alta velocidad, facilitan el mezclado a alta velocidad. Este enfoque puede, hasta cierto punto, reducir los efectos del flujo laminar en el líquido de mezcla y mejorar la eficiencia de la mezcla. Un ejemplo de esto es nuestro producto, el SAB-BF3302. Para conocer la apariencia y las especificaciones técnicas del producto, consulte la Imagen 3.
Imagen 3: Máquina de espumado de cajas completamente automática (Sabtech Technology Limited)
Esta línea de producción viene con modos de control por computadora totalmente automático y de control manual. Es adecuado para producir espuma de poliuretano flexible con densidades que oscilan entre 10 y 60 kg/cm. Salida máxima de espuma: 180L. Altura de la espuma: 1200 mm. Potencia de mezcla: 7,5kW. Potencia total: 35kW.
2. Equipos para la preparación de espuma de celda abierta
La espuma de poliuretano de celda abierta es un producto de espuma funcional desarrollado en la década de 1980. Posee una alta porosidad, una estructura de red distinta, suavidad, transpirabilidad y buena resistencia mecánica. Encuentra una amplia aplicación como excelente material de filtración y absorción de impactos en transporte, instrumentación, membranas de filtración de materiales médicos y como portadores de catalizadores en la industria química. Llenarlo en los tanques de combustible de los aviones puede suprimir la agitación del aceite y reducir el riesgo de explosiones. La impregnación con suspensión cerámica y sinterización a alta temperatura da como resultado un novedoso material filtrante cerámico de celda abierta utilizado en la industria metalúrgica.
La preparación de espuma de poliuretano de celda abierta implica métodos como la hidrólisis con vapor, el remojo alcalino y la explosión. En la producción industrial se utiliza predominantemente el método de explosión. Inicialmente, se prepara espuma de poliuretano de un tamaño de poro específico mediante el proceso de espumado en caja. Posteriormente, se coloca en un equipo de red de explosión dedicado, se llena con gas explosivo y se enciende después de llenar completamente el cuerpo de espuma. Al utilizar la energía del impacto y el calor de alta temperatura generado por los parámetros de la explosión, las paredes celulares de la espuma de poliuretano se rompen y se fusionan con las paredes celulares, formando una estructura de red distinta, como se muestra en la Imagen 4.
Imagen 4: Espuma de celda abierta claramente interconectada
Se utilizan métodos como la hidrólisis con vapor o el remojo alcalino para preparar espuma de células abiertas. Sin embargo, existen problemas de baja eficiencia, mala calidad y contaminación ambiental con estos métodos. Se emplean principalmente para producción a pequeña escala, como pruebas de muestras de laboratorio. La producción a gran escala utiliza principalmente el método de explosión.
ATL Schubs GmbH, una empresa alemana, se especializa en la investigación y el desarrollo de espuma reticulada de poliuretano y fabrica la maquinaria de explosión de espuma ReticulatusTM. La cámara de explosión del equipo de explosión de espuma reticulada se presenta en dos formas: cilíndrica y rectangular. El primero es adecuado para espuma cilíndrica, mientras que el segundo es más versátil. Puede usarse no sólo para espuma cuadrada sino también para procesar espuma reticulada a partir de espuma cilíndrica, como se muestra en la Imagen 5. La cámara de explosión está construida con placas de acero de alta calidad de 100 mm de espesor. El funcionamiento está controlado por un módem de computadora y ofrece funciones como apertura y cierre automáticos, bloqueo automático, operación automática y alertas automáticas. Además, el diseño y la modificación remota de programas se pueden facilitar mediante sensores de transmisión de datos.
Imagen 5: Equipo de procesamiento de reticulación de espuma de poliuretano (ATL Schubs)
Durante la producción, se introducen en la cámara de explosión cuerpos de espuma de 3 a 6 metros de longitud destinados a la reticulación. La puerta de la cámara se cierra hidráulicamente y el aire del interior de la cámara se evacua mediante una bomba de vacío. Bajo control por computadora, se introduce una proporción precisa de gases de oxígeno e hidrógeno y la proporción de la mezcla de gases se ajusta mecánicamente en función de factores como el tipo de muestra de espuma y los requisitos de tamaño de la red.
Los sensores monitorean continuamente el proceso, asegurando que todos los parámetros del proceso estén dentro de las condiciones especificadas antes de que se inicie la detonación controlada. La fuerza explosiva y la intensidad de la llama generada por la explosión penetran a través de todo el cuerpo de espuma, creando una estructura de red distinta. Después de la formación, el cuerpo de espuma se enfría, los materiales residuales y los gases residuales se purgan con nitrógeno y luego se puede abrir la cámara de presión para recuperar la espuma reticulada. Todo el proceso dura aproximadamente de 8 a 10 minutos. El diámetro de los poros de la espuma reticulada está dentro del rango de 10 a 100 poros por pulgada (ppi) (Nota: ppi se refiere al número de poros dentro de una pulgada).
Lo anterior proporciona una idea del proceso de producción no continuo de espuma flexible de poliuretano. Espero que esta información te resulte útil.
Existen muchas razones para el agrietamiento de la espuma de poliuretano, incluidos factores tanto químicos como mecánicos. Durante la producción, es importante detenerse e inspeccionar, asegurándose de eliminar el fenómeno de agrietamiento. A continuación se presentan algunas ideas que hemos resumido en función de años de experiencia en producción, con la esperanza de inspirar a todos.
1. Cambios repentinos
Los cambios repentinos en la velocidad del transportador, las variaciones en el uso del catalizador o el funcionamiento irregular del transportador pueden provocar que la espuma se agriete. Ajuste las situaciones anteriores de forma cuidadosa y gradual. Un cambio significativo en la velocidad del transportador puede provocar grandes grietas en los bloques de espuma.
2 Película de polietileno
Si la película deja de moverse por alguna razón, la espuma entrará en contacto con la superficie estática, lo que provocará grietas. Si ocurre esta situación, verifique el rodillo de bobinado de la rebobinadora y examine la separación de la película en el área de curado.
3 Formación de espuma alrededor de ciertas sustancias
Se tiende a formar espuma alrededor de ciertas sustancias, especialmente en el conducto de alimentación, lo que puede provocar fácilmente grietas.
Antes de la producción, asegúrese de que no queden residuos ni desechos en el conjunto del cabezal de mezcla, la manguera de alimentación y el conducto de descarga.
4 Amina excesiva
Cuando no hay suficiente octoato estannoso, un exceso de amina puede provocar el mismo efecto y acelerar el tiempo de subida. Por lo tanto, la dosis de amina debe reducirse.
5 Octoato estannoso insuficiente
Debido a que la reacción de formación de espuma es más rápida que la reacción de polimerización, es posible que fluya algo de espuma, lo que provoca grietas. Por lo tanto, se debe aumentar la cantidad de octoato estannoso.
6 Aceite de silicona
La espuma se vuelve inestable y propensa a romperse, pudiendo formarse "depresiones" en la espuma, por lo que es necesario aumentar la dosis de aceite de silicona.
7 Estructura de pequeñas burbujas de aire
Las paredes de espuma delgadas pueden provocar grietas debido a la formación de espuma. Para abordar esto de manera integral: reduzca el contenido de aire, disminuya la velocidad del cabezal de mezcla o aumente la presión del cabezal de mezcla. También es necesario cambiar la dosis del catalizador de octoato estannoso.
Condiciones de prueba:
1. La formación de espuma rápida se toma del centro de la espuma, mientras que las muestras de espuma moldeada se toman de la parte central o para pruebas de muestra completa.
2. La espuma recién fabricada debe madurar durante 72 horas en su estado natural antes de tomar la muestra. Las muestras deben colocarse en un ambiente de temperatura y humedad constantes (según GB/T2918: 23 ± 2 ℃ , humedad relativa 50 ± 5%).
Densidad : Densidad = Masa (kg) / Volumen (m3)
Dureza : Deflexión por carga de indentación (ILD), Deflexión por carga de compresión (CLD)
La principal diferencia entre estos dos métodos de prueba es el área de carga de la espuma plástica. En la prueba ILD, la muestra se somete a un área comprimida de 323 cm2, mientras que en CLD se comprime toda la muestra. Aquí, sólo discutiremos el método de prueba ILD.
En la prueba ILD, el tamaño de la muestra es 38*38*50 mm, con un diámetro del cabezal de prueba de 200 mm (con una esquina redondeada de R=10 en el borde inferior) y una placa de soporte con orificios de 6 mm espaciados 20 mm. La velocidad de carga del cabezal de prueba es (100 ± 20) mm/min. Inicialmente, se aplica una presión de 5 N como punto cero, luego la muestra se comprime hasta el 70% de su espesor en el punto cero y se descarga a la misma velocidad. Esta carga y descarga se repite tres veces como precarga y luego se comprime inmediatamente a la misma velocidad. Los espesores de compresión son 25 ± 1% y 65 ± 1%. Después de alcanzar la deformación, mantenga presionado 30 ± 1s y registre el valor de sangría relativo. El valor registrado es la dureza de la indentación en ese nivel de compresión.
Además, 65 % ILD / 25 % ILD = relación de compresión, que es una medida de la comodidad de la espuma.
Resistencia a la tracción, alargamiento de rotura : Se refiere a la tensión máxima de tracción aplicada durante el ensayo de tracción hasta la fractura, y el porcentaje de alargamiento de la muestra en el momento de la fractura.
Resistencia a la tracción = Carga en la fractura / Área de la sección transversal original de la muestra
Elongación en la rotura = (Distancia de fractura - Distancia original) / Distancia original * 100%
Resistencia al desgarre : Mide la resistencia del material al desgarro aplicando una fuerza de desgarro especificada en una muestra de forma definida.
Tamaño de la muestra: 150*25*25 mm (GB/T 10808), con la dirección del espesor de la muestra como dirección de subida de la espuma. Se realiza una incisión de 40 mm de largo a lo largo de la dirección del espesor (dirección de subida de la espuma) en el centro de un extremo de la muestra. Mida el espesor a lo largo de la dirección del espesor de la muestra, luego abra la muestra y sujétela en el accesorio de la máquina de prueba. Aplique carga a una velocidad de 50-20 mm/min, usando una cuchilla para cortar la muestra, manteniendo la cuchilla en la posición central. Registre el valor máximo cuando la muestra se rompe o rasga a 50 mm.
Resistencia al desgarro = Valor de fuerza máxima (N) / Espesor promedio de la muestra (cm)
Generalmente se analizan tres muestras y se toma la media aritmética.
Resiliencia : Mide el rendimiento de rebote de la espuma al permitir que una bola de acero de peso y diámetro dado caiga libremente sobre la superficie de la muestra de espuma plástica desde una altura específica. La relación entre la altura del rebote y la altura de caída de la bola de acero indica la resiliencia de la espuma.
Requisitos de la prueba: Tamaño de la muestra 100*100*50 mm, la dirección de caída de la bola debe ser consistente con la dirección de uso de la espuma. El tamaño de la bola de acero es ∮ 164 mm, peso 16,3 gy cae desde una altura de 460 mm.
Tasa de resiliencia = Altura de rebote de la bola de acero / Altura de caída de la bola de acero * 100%
Nota: Las muestras deben estar horizontales, la bola de acero debe fijarse antes de caer (estática), cada muestra se prueba tres veces con intervalos de 20 segundos y se registra el valor máximo.
Deformación permanente por compresión : En un ambiente constante, la muestra de material de espuma se mantiene bajo deformación constante durante un cierto período, luego se le permite recuperarse durante un período de tiempo, observando el efecto de la deformación en el espesor de la muestra. La relación entre la diferencia entre el espesor inicial y el espesor final de la muestra con respecto al espesor inicial representa la deformación por compresión permanente de la espuma plástica.
Deformación permanente por compresión = (Espesor inicial de la muestra - Espesor final de la muestra) / Espesor inicial de la muestra * 100
Resistente al fuego
COV (compuestos orgánicos volátiles)
I. Ventajas de la tecnología de espuma de poliuretano in situ:
El método de espumado in situ, rociando (o vertido) una capa aislante de espuma de poliuretano, tiene la superficie en su conjunto sin costuras, reduciendo la pérdida de calor, con una alta eficiencia de construcción, fácil de cumplir con los requisitos de calidad, reduciendo los procedimientos de construcción y eliminando la necesidad. para recubrimientos anticorrosivos en superficies de tuberías.
II. Principio del proceso de construcción de espuma de poliuretano en el sitio:
El principio del proceso de vertido, pulverización y espuma de plástico de espuma de poliuretano es que el isocianato de poliéter puede sufrir una reacción de policondensación para formar metacrilato de amina, que puede generar el poliaminometiletilo requerido, comúnmente conocido como plástico de espuma de poliuretano. Durante la reacción se añaden simultáneamente catalizadores, agentes reticulantes, agentes espumantes, estabilizadores de espuma, etc. para promover y perfeccionar la reacción química.
Estas materias primas se dividen en dos grupos, se mezclan completamente y luego se bombean proporcionalmente a una pistola pulverizadora especial mediante bombas dosificadoras. Se mezclan completamente y se rocían sobre la superficie de tuberías o equipos con una pistola rociadora o un mezclador de vertido, reaccionan, hacen espuma y forman espuma plástica en 5 a 10 segundos, que luego cura y solidifica.
III. Métodos de construcción con espuma de poliuretano en el sitio:
Método de pulverización: Según esta fórmula, se almacenan dos grupos de soluciones en dos barriles respectivamente. Los materiales se filtran a la bomba dosificadora, impulsada por un motor neumático, y se ingresan al cuerpo de la pistola a través del tubo de material. El aire comprimido regula el material en la cámara de mezcla, lo mezcla y luego lo rocía sobre la tubería o el equipo para formar espuma y formar.
Método de vertido: Los dos grupos de soluciones preparados se almacenan en barriles, se filtran a la bomba dosificadora, son accionadas por un motor neumático y se introducen en el mezclador de vertido a través del tubo de material. Se introduce aire comprimido en el motor de vertido, lo que impulsa el eje agitador para mezclar los dos grupos de materiales, que luego se inyectan en el molde para formar espuma y formar.
Precauciones para la construcción con espuma de poliuretano en el sitio:
Revuelva el material a temperatura ambiente para que se mezcle y reaccione, luego viértalo rápidamente en el espacio que necesita formarse. Durante la construcción, controle el tiempo de reacción de formación de espuma para que el material mezclado después de agitar esté en estado líquido cuando se vierta en el espacio. Durante el proceso de formación de espuma, se generarán fuerzas de expansión significativas, por lo que se debe reforzar adecuadamente la capa intermedia o el molde de vertido.
Comprender los principios detrás de las reacciones de la espuma es crucial. Para dominar la formación de espuma, debemos esforzarnos por establecer en nuestra mente un modelo de reacción de la espuma utilizando las siguientes cuatro ecuaciones de reacción. Al familiarizarnos con las variaciones dentro del modelo, cultivamos una sensibilidad que nos permite comprender todo el proceso de reacción de la espuma. Este enfoque ayuda a estructurar nuestra base de conocimientos y habilidades profesionales en espuma de poliuretano. Ya sea estudiando activamente los principios de reacción de la espuma o explorándolos pasivamente durante el proceso de formación de espuma, nos sirve como un medio vital para profundizar nuestra comprensión de las formulaciones y mejorar nuestras habilidades.
Reacción 1
TDI + Poliéter → Uretano
Reacción 2
TDI + Uretano → isocianurato
Reacción 3
TDI + Agua → Urea + Dióxido de Carbono
Reacción 4
TDI + Urea → Biuret (poliurea)
01: Las reacciones 1 y 2 son reacciones de crecimiento en cadena, formando la cadena principal de la espuma. Antes de que la espuma alcance dos tercios de su altura máxima, la cadena principal se alarga rápidamente, predominando reacciones de crecimiento en cadena dentro de la espuma. En esta etapa, debido a las temperaturas internas relativamente bajas, las reacciones 3 y 4 no son prominentes.
02: Las reacciones 3 y 4 son reacciones de reticulación, formando las ramas de la espuma. Una vez que la espuma alcanza dos tercios de su altura máxima, la temperatura interna aumenta y las reacciones 3 y 4 se intensifican rápidamente. Durante esta etapa, las reacciones 1 a 4 son vigorosas, marcando un período crítico para la formación de las propiedades de la espuma. Las reacciones 3 y 4 proporcionan estabilidad y soporte al sistema de espuma. La reacción 1 contribuye a la elasticidad de la espuma, mientras que las reacciones 3 y 4 contribuyen a la resistencia a la tracción y la dureza de la espuma.
03: Las reacciones que producen gas se denominan reacciones de formación de espuma. La generación de dióxido de carbono es una reacción espumante y la principal reacción exotérmica en la espuma de poliuretano. En los sistemas de reacción que contienen metano, la vaporización del metano constituye una reacción de formación de espuma y un proceso endotérmico.
04: Las reacciones que conducen a la formación de componentes de la espuma se conocen como reacciones de gelificación y abarcan todas las reacciones excepto las que producen gases. Esto incluye la formación de uretano, urea, isocianurato y biuret (poliurea) a partir de las reacciones 1 a 4.
Persona de contacto: Wenky Lau
Número de contacto: +86-15687268672
Correo electrónico: sales1@alforu.cn
WhatsApp:86 15687268672
Dirección de la empresa: NO. 18 South Industry Road, ciudad de Dongguan, provincia de Guangdong China