Solutions de bout en bout, des matières premières aux équipements de production pour la mousse PU et les matelas.
Sabtech Technology Limited se consacre à fournir des fabricants de machines à mousser par lots à nos clients. Le produit est conçu pour intégrer le plus haut niveau de spécifications techniques, se faisant le plus fiable sur le marché concurrentiel. De plus, comme nous avons recours à l'introduction de technologies de pointe, il s'avère plus rentable et plus durable. Il est prévu de maintenir les avantages concurrentiels.
La plus grande différence entre Sabtech et d'autres marques est la concentration sur les produits. Nous promettons de prêter une attention 100% à nos produits. Un de nos clients déclare: «Les détails des produits sont impeccables», ce qui est la plus haute évaluation d'entre nous. Grâce à notre attention méticuleuse, nos produits sont acceptés et appréciés par les clients du monde entier.
Sabtech Technology Limited fournit des échantillons aux clients, afin que ceux-ci n'aient pas à se soucier de la qualité des produits, comme les fabricants de machines à mousse par lots, avant de passer les commandes. De plus, pour satisfaire les besoins des clients, nous proposons également un service sur mesure pour fabriquer des produits selon les besoins des clients.
Pour de nombreuses petites entreprises, bien que la ligne de production continue de mousse flexible de polyuréthane offre un rendement élevé, les coûts sont également très élevés et le marché cible n'exige peut-être pas d'aussi grandes quantités. En conséquence, les lignes de production non continues de mousse flexible de polyuréthane sont devenues leur choix préféré. Ce qui suit est une introduction à la ligne de production non continue de mousse flexible de polyuréthane:
1. Équipement de processus de moussage de boîte
Le processus et l'équipement de moussage en boîte ont été développés en tant que nouvelle technologie pour répondre aux besoins des installations de production de mousse de polyuréthane à petite échelle. Il s’appuie sur des techniques de production de mousse manuelle et en laboratoire, essentiellement une version améliorée des méthodes de production de mousse en laboratoire. Ce processus est passé par trois étapes de développement. Initialement, tous les composants étaient pesés séquentiellement et ajoutés dans un récipient plus grand, suivi de l'ajout de TDI. Après un mélange rapide, le mélange a été immédiatement versé dans un grand moule en forme de boîte. Cette méthode nécessitait une forte intensité de travail, émettait de fortes concentrations de gaz toxiques et posait des risques importants pour la santé des opérateurs. De plus, les éclaboussures de matériaux lors du coulage entraîneraient une grande quantité d'air, conduisant à la formation de grosses bulles d'air dans la structure de la mousse et provoquant même des fissures dans la mousse. De plus, il y avait une quantité importante de déchets restants, ce qui entraînait un gaspillage de matériaux important et des coûts de production élevés.
Plus tard, le processus a incorporé des pompes doseuses pour transporter les matériaux vers un baril de mélange avec un fond à ouverture automatique. Après un mélange à grande vitesse, la plaque inférieure du baril de mélange s'ouvrait et l'air comprimé expulsait rapidement le matériau dans le moule pour l'expansion de la mousse. Cependant, cette approche souffrait de structures de pores inégales en raison du flux rapide du matériau, entraînant des structures de mousse tourbillonnantes et des problèmes de qualité tels que des fissures en forme de croissant. La troisième étape de l'amélioration du processus est le dispositif de moussage en boîte qui est le plus souvent adopté aujourd'hui. Son principe fondamental de moussage est illustré en photo
(un) Dosage et mélange de matières premières (b) Moussage (c) La mousse monte pour limiter la hauteur
1 - Baril de mélange de matériaux élévateur ; 2 - Moule de boîte assemblable ; 3 - Plaque supérieure de la boîte flottante ; 4 - Corps en mousse
Image 1 : Diagramme schématique du principe de moussage en boîte
L'équipement de production industrielle pour le moussage en caisses se compose principalement de réservoirs de matières premières, d'unités de pompe doseuse, de barils de mélange élévateurs et de moules de caisses en bois assemblables. Comme le montre le diagramme schématique de l'équipement de moussage en boîte fabriqué par Hennecke (image 2), les matières premières moussantes sont stockées dans des réservoirs et régulées par des dispositifs de contrôle pour atteindre la plage de température de traitement requise, généralement maintenue à 23°C ± 3°C. Séquentiellement, la pompe doseuse injecte des polyéther polyols, un catalyseur, des tensioactifs, des agents moussants, etc., dans le fût de mélange pendant une durée d'agitation de 30 à 60 minutes. Ensuite, selon la formulation, le TDI est introduit, soit directement, soit par l'intermédiaire d'un récipient intermédiaire doté d'un interrupteur inférieur. Le mélange immédiat suit l'ajout de TDI. En fonction des matériaux et de la formulation, la vitesse d'agitation est généralement contrôlée entre 900 et 1 000 tours par minute (r/min), avec un temps d'agitation de 3 à 8 secondes. Après agitation, le fût de mélange est rapidement soulevé. La partie inférieure du fût n'a pas de fond et est placée sur la plaque inférieure de la boîte de moulage lors de l'abaissement, en utilisant une bague d'étanchéité au bord inférieur du fût pour empêcher les fuites de matériau.
Une fois soulevée, la bouillie bien mélangée peut être directement étalée et dispersée sur la plaque inférieure du moule, permettant une montée naturelle de la mousse. Pour éviter la formation d'une surface bombée sur la partie supérieure pendant le moussage, une plaque de moule supérieure qui correspond à la zone du moule et permet un mouvement limite vers le haut est équipée. La boîte à moule est principalement constituée de panneaux de bois rigides, la plaque inférieure étant fixée sur un chariot de transport de moule mobile. Les quatre panneaux latéraux sont assemblables et dotés de mécanismes de verrouillage à ouverture et fermeture rapides. Les côtés intérieurs des panneaux sont recouverts d'agents de démoulage à base de silicone ou doublés d'un film de polyéthylène pour empêcher l'adhérence. Après 8 à 10 minutes de maturation forcée au sein de la caisse, les panneaux latéraux de la caisse du moule sont ouverts, permettant le retrait de la mousse souple en forme de bloc. Après 24 heures supplémentaires de maturation, ces blocs de mousse peuvent subir une découpe et d'autres procédures de post-traitement.
1 - Réservoir de matières premières ; 2 - Unité de pompe doseuse ; 3 - Armoire de commande ; 4 - Baril de mélange avec dispositif élévateur ; 5 - Boîte moussante ; 6 - Produit fini en mousse ; 7 - Plaque flottante
Photo 2 : Équipement de moussage de boîtes fabriqué par Hennecke (BFM100/BFM150)
Le processus et l'équipement de moussage en boîte présentent des caractéristiques telles qu'un fonctionnement simple, une structure d'équipement compacte et simple, un faible investissement, un faible encombrement et une maintenance pratique. Ces caractéristiques le rendent particulièrement adapté aux petites entreprises engagées dans la production intermittente de blocs de mousse de faible densité. Cependant, ses inconvénients sont également évidents : efficacité de production moindre, environnement de production moins favorable, concentration élevée de gaz toxiques émis sur site, nécessitant l'utilisation de systèmes d'échappement et de purification des gaz toxiques très efficaces.
Pour améliorer l'efficacité du mélange, certaines entreprises ont ajouté plusieurs déflecteurs verticaux et équidistants aux parois intérieures du fût de mélange. Ces déflecteurs, combinés à des agitateurs en spirale à grande vitesse, facilitent un mélange à grande vitesse. Cette approche peut, dans une certaine mesure, réduire les effets d'écoulement laminaire dans le liquide de mélange et améliorer l'efficacité du mélange. Un exemple de ceci est notre produit, le SAB-BF3302. Pour l'apparence et les spécifications techniques du produit, veuillez vous référer à l'image 3.
Image 3 : Machine à mousser les boîtes entièrement automatique (Sabtech Technology Limited)
Cette ligne de production est dotée de modes de contrôle informatique entièrement automatique et de contrôle manuel. Il convient à la production de mousse de polyuréthane flexible avec des densités allant de 10 à 60 kg/cm. Débit de mousse maximum : 180L. Hauteur de la mousse : 1200 mm. Puissance de mélange : 7,5 kW. Puissance totale : 35 kW.
2. Équipement pour la préparation de mousse à cellules ouvertes
La mousse de polyuréthane à cellules ouvertes est un produit en mousse fonctionnelle développé dans les années 1980. Il possède une porosité élevée, une structure de réseau distincte, une douceur, une respirabilité et une bonne résistance mécanique. Il trouve une large application en tant qu'excellent matériau de filtration et d'absorption des chocs dans les transports, l'instrumentation, les membranes de filtration de matériaux médicaux et comme support de catalyseur dans l'industrie chimique. Le remplir dans les réservoirs de carburant des avions peut supprimer l’agitation du pétrole et réduire le risque d’explosion. Son imprégnation avec une boue céramique et son frittage à haute température aboutissent à un nouveau matériau filtrant en céramique à cellules ouvertes utilisé dans l'industrie métallurgique.
La préparation de la mousse de polyuréthane à cellules ouvertes implique des méthodes telles que l'hydrolyse à la vapeur, le trempage alcalin et l'explosion. Dans la production industrielle, la méthode d'explosion est principalement utilisée. Initialement, une mousse de polyuréthane d'une taille de pores spécifique est préparée à l'aide du procédé de moussage en boîte. Par la suite, il est placé dans un équipement de réseau d'explosion dédié, rempli de gaz explosif, et enflammé après avoir complètement rempli le corps en mousse. En utilisant l'énergie d'impact et la chaleur à haute température générées par les paramètres d'explosion, les parois cellulaires de la mousse de polyuréthane sont rompues et fusionnées sur les parois cellulaires, formant une structure de réseau distincte, comme le montre l'image 4.
Image 4 : Mousse à cellules ouvertes clairement connectée
Des méthodes telles que l’hydrolyse à la vapeur ou le trempage alcalin sont utilisées pour préparer la mousse à cellules ouvertes. Cependant, ces méthodes posent des problèmes de faible efficacité, de mauvaise qualité et de pollution environnementale. Ils sont principalement utilisés pour la production à petite échelle, comme les tests d’échantillons en laboratoire. La production à grande échelle utilise principalement la méthode de l'explosion.
ATL Schubs GmbH, une société allemande, est spécialisée dans la recherche et le développement de mousse polyuréthane réticulée et fabrique les machines d'explosion de mousse ReticulatusTM. La chambre d'explosion de l'équipement d'explosion à mousse réticulée se présente sous deux formes : cylindrique et rectangulaire. Le premier convient à la mousse cylindrique, tandis que le second est plus polyvalent. Il peut être utilisé non seulement pour la mousse carrée mais également pour le traitement de la mousse réticulée à partir de la mousse cylindrique, comme le montre l'image 5. La chambre d'explosion est construite à partir de plaques d'acier de haute qualité de 100 mm d'épaisseur. Le fonctionnement est contrôlé par un modem informatique, offrant des fonctionnalités telles que l'ouverture et la fermeture automatiques, le verrouillage automatique, le fonctionnement automatique et les alertes automatiques. De plus, la conception et la modification de programmes à distance peuvent être facilitées grâce à des capteurs de transmission de données.
Photo 5 : Équipement de traitement de réticulation de mousse de polyuréthane (ATL Schubs)
Lors de la production, des corps en mousse de 3 à 6 mètres de long destinés à la réticulation sont poussés dans la chambre d'explosion. La porte de la chambre est fermée hydrauliquement et l'air à l'intérieur de la chambre est évacué à l'aide d'une pompe à vide. Sous contrôle informatique, une proportion précise d'oxygène et d'hydrogène gazeux est introduite et le rapport du mélange gazeux est ajusté mécaniquement en fonction de facteurs tels que le type d'échantillon de mousse et les exigences de taille du réseau.
Des capteurs surveillent en permanence le processus, garantissant que tous les paramètres du processus sont dans les conditions spécifiées avant le lancement d'une détonation contrôlée. La force explosive et l'intensité de la flamme générées par l'explosion pénètrent à travers tout le corps en mousse, créant une structure de réseau distincte. Après le formage, le corps en mousse est refroidi, les matières résiduelles et les gaz résiduaires sont purgés à l'aide d'azote, et la chambre de pression peut ensuite être ouverte pour récupérer la mousse réticulée. L'ensemble du processus prend environ 8 à 10 minutes. Le diamètre des pores de la mousse réticulée se situe entre 10 et 100 pores par pouce (ppi) (Remarque : ppi fait référence au nombre de pores dans un pouce).
Ce qui précède donne un aperçu du processus de production non continu de la mousse flexible de polyuréthane. J'espère que ces informations vous seront utiles.
Il existe de nombreuses raisons pour lesquelles la mousse de polyuréthane se fissure, notamment des facteurs chimiques et mécaniques. Lors de la production, il est important de s&39;arrêter et d&39;inspecter, en veillant à éliminer le phénomène de fissuration. Vous trouverez ci-dessous quelques idées que nous avons résumées sur la base d’années d’expérience de production, dans l’espoir d’inspirer tout le monde.
1. Changements soudains
Des changements soudains dans la vitesse du convoyeur, des variations dans l’utilisation du catalyseur ou un fonctionnement irrégulier du convoyeur peuvent provoquer la fissuration de la mousse. Ajustez soigneusement et progressivement les situations ci-dessus. Un changement important de la vitesse du convoyeur peut entraîner de grandes fissures dans les blocs de mousse.
2 Film de polyéthylène
Si le film cesse de bouger pour une raison quelconque, la mousse entrera en contact avec la surface statique, ce qui entraînera des fissures. Si cette situation se produit, vérifiez le rouleau d&39;enroulement de l&39;enrouleur et examinez la séparation du film dans la zone de durcissement.
3 Formation de mousse autour de certaines substances
De la mousse a tendance à se former autour de certaines substances, notamment dans la goulotte d&39;alimentation, ce qui peut facilement provoquer des fissures.
Avant la production, assurez-vous qu&39;il ne reste aucun résidu ou débris dans l&39;assemblage de la tête de mélange, du tuyau d&39;alimentation et de la goulotte de décharge.
4 Amine excessive
Lorsqu&39;il n&39;y a pas suffisamment d&39;octoate stanneux, un excès d&39;amine peut entraîner le même effet et accélérer le temps de montée. Il faut donc réduire le dosage d’amine.
5 Octoate stanneux insuffisant
En raison de la réaction de moussage plus rapide par rapport à la réaction de polymérisation, une partie de la mousse peut couler, entraînant des fissures. Par conséquent, la quantité d’octoate stanneux doit être augmentée.
6 Huile de silicone
La mousse devient instable et sujette à la rupture, formant potentiellement des « dépressions » sur la mousse, il est donc nécessaire d&39;augmenter le dosage d&39;huile de silicone.
7 Structure des petites bulles d&39;air
Les parois en mousse minces dues à la formation de mousse peuvent provoquer des fissures. Pour résoudre ce problème de manière globale : réduisez la teneur en air, diminuez la vitesse de la tête de mélange ou augmentez la pression de la tête de mélange. Il est également nécessaire de modifier le dosage du catalyseur octoate stanneux.
Conditions de test:
1. Le moussage rapide est prélevé au centre de la mousse, tandis que les échantillons de mousse moulée sont prélevés dans la partie centrale ou pour des tests sur des échantillons entiers.
2. La mousse nouvellement fabriquée doit être mûrie pendant 72 heures dans son état naturel avant d'être échantillonnée. Les échantillons doivent être placés dans un environnement à température et humidité constantes (conformément à GB/T2918: 23 ± 2 ℃ , humidité relative 50 ± 5%).
Densité : Densité = Masse (kg) / Volume (m3)
Dureté : Déflexion sous charge d'indentation (ILD), déflexion sous charge de compression (CLD)
La principale différence entre ces deux méthodes de test réside dans la zone de chargement de la mousse plastique. Dans le test ILD, l'échantillon est soumis à une surface comprimée de 323 cm2, tandis que dans le test CLD, l'échantillon entier est compressé. Ici, nous discuterons uniquement de la méthode de test ILD.
Dans le test ILD, la taille de l'échantillon est de 38*38*50 mm, avec un diamètre de tête de test de 200 mm (avec un coin rond de R=10 sur le bord inférieur) et une plaque de support avec des trous de 6 mm espacés de 20 mm. La vitesse de chargement de la tête de test est (100 ± 20) mm/min. Initialement, une pression de 5N est appliquée comme point zéro, puis l'échantillon est comprimé à 70 % de son épaisseur au point zéro et déchargé à la même vitesse. Ce chargement et ce déchargement sont répétés trois fois en préchargement, puis immédiatement comprimés à la même vitesse. Les épaisseurs de compression sont 25 ± 1% et 65 ± 1%. Après avoir atteint la déformation, maintenez pendant 30 ± 1s et enregistrez la valeur d’indentation relative. La valeur enregistrée est la dureté d'indentation à ce niveau de compression.
De plus, 65 % ILD / 25 % ILD = taux de compression, qui est une mesure du confort de la mousse.
Résistance à la traction, allongement à la rupture : Désigne la contrainte de traction maximale appliquée lors de l'essai de traction jusqu'à la rupture, et le pourcentage d'allongement de l'échantillon à la rupture.
Résistance à la traction = Charge à la rupture / Surface de la section transversale originale de l'échantillon
Allongement à la rupture = (Distance de rupture - Distance d'origine) / Distance d'origine * 100 %
La force des larmes : Mesure la résistance du matériau à la déchirure en appliquant une force de déchirure spécifiée sur un échantillon de forme définie.
Taille de l'échantillon : 150*25*25 mm (GB/T 10808), avec la direction de l'épaisseur de l'échantillon comme direction de montée de la mousse. Une incision de 40 mm de long est pratiquée dans le sens de l’épaisseur (sens de montée de la mousse) au centre d’une extrémité de l’échantillon. Mesurez l'épaisseur dans le sens de l'épaisseur de l'échantillon, puis ouvrez l'échantillon et fixez-le dans le support de la machine de test. Appliquez la charge à une vitesse de 50 à 20 mm/min, en utilisant une lame pour couper l'échantillon, en gardant la lame en position centrale. Enregistrez la valeur maximale lorsque l'échantillon se brise ou se déchire à 50 mm.
Résistance à la déchirure = valeur de force maximale (N) / épaisseur moyenne de l'échantillon (cm)
Habituellement, trois échantillons sont testés et la moyenne arithmétique est établie.
Résilience : Mesure les performances de rebond de la mousse en permettant à une bille d'acier d'un diamètre et d'un poids donnés de tomber librement sur la surface de l'échantillon de mousse plastique à partir d'une hauteur spécifiée. Le rapport entre la hauteur de rebond et la hauteur de chute de la bille d'acier indique la résilience de la mousse.
Exigences du test : taille de l'échantillon 100*100*50 mm, la direction de chute de la balle doit être cohérente avec la direction d'utilisation de la mousse. La taille de la bille d'acier est ∮ 164 mm, pèse 16,3 g et tombe d'une hauteur de 460 mm.
Taux de résilience = Hauteur de rebond de la bille d'acier / Hauteur de chute de la bille d'acier * 100 %
Remarque : les échantillons doivent être horizontaux, la bille d'acier doit être fixée avant de tomber (statique), chaque échantillon est testé trois fois à intervalles de 20 s et la valeur maximale est enregistrée.
Déformation permanente par compression : Dans un environnement constant, l'échantillon de matériau en mousse est maintenu sous déformation constante pendant une certaine période, puis on le laisse récupérer pendant un certain temps, en observant l'effet de la déformation sur l'épaisseur de l'échantillon. Le rapport entre la différence entre l'épaisseur initiale et l'épaisseur finale de l'échantillon et l'épaisseur initiale représente la déformation permanente par compression de la mousse plastique.
Déformation permanente par compression = (Épaisseur initiale de l'échantillon - Épaisseur finale de l'échantillon) / Épaisseur initiale de l'échantillon * 100
Résistance au feu
COV (Composés Organiques Volatils)
I. Avantages de la technologie de moussage sur site du polyuréthane:
La méthode de moussage sur site, de pulvérisation (ou de coulage) d'une couche isolante en mousse de polyuréthane présente une surface dans son ensemble sans joints, réduisant les pertes de chaleur, avec une efficacité de construction élevée, facile à répondre aux exigences de qualité, réduisant les procédures de construction et éliminant le besoin pour les revêtements anticorrosion sur les surfaces des tuyaux.
II. Principe du processus de construction de mousse de polyuréthane sur site:
Le principe du processus de moussage, de pulvérisation et de coulée de mousse plastique polyuréthane est que l'isocyanate de polyéther peut subir une réaction de polycondensation pour former du méthacrylate d'amine, qui peut générer le polyaminométhyléthyle requis, communément appelé mousse plastique polyuréthane. Des catalyseurs, agents de réticulation, agents moussants, stabilisants de mousse, etc., sont ajoutés simultanément lors de la réaction pour favoriser et perfectionner la réaction chimique.
Ces matières premières sont divisées en deux groupes, entièrement mélangées, puis pompées proportionnellement dans un pistolet pulvérisateur spécial par des pompes doseuses. Ils sont entièrement mélangés et pulvérisés sur la surface des canalisations ou des équipements dans le pistolet pulvérisateur ou le mélangeur verseur, réagissent, moussent et forment une mousse plastique en 5 à 10 secondes, qui durcit et se solidifie ensuite.
III. Méthodes de construction de mousse de polyuréthane sur site:
Méthode de pulvérisation : Selon cette formule, deux groupes de solutions sont stockés respectivement dans deux barils. Les matériaux sont filtrés vers la pompe doseuse, entraînée par un moteur pneumatique, et introduits dans le corps du pistolet via le tube de matériau. L'air comprimé régule le matériau dans la chambre de mélange, le mélange, puis le pulvérise sur le pipeline ou l'équipement pour mousser et se former.
Méthode de versement : Les deux groupes de solutions préparés sont stockés dans des barils, filtrés vers la pompe doseuse, entraînée par un moteur pneumatique et introduits dans le mélangeur verseur via le tube de matériau. De l'air comprimé est introduit dans le moteur de coulée, entraînant l'arbre d'agitation pour mélanger les deux groupes de matériaux, qui sont ensuite injectés dans le moule pour le moussage et le formage.
Précautions pour la construction de mousse de polyuréthane sur site:
Remuez le matériau à température ambiante pour le mélanger et réagir, puis versez-le rapidement dans l'espace à former. Pendant la construction, contrôlez le temps de réaction de moussage afin que le matériau mélangé après agitation soit à l'état liquide lorsqu'il est versé dans l'espace. Pendant le processus de moussage, des forces d’expansion importantes seront générées, c’est pourquoi un renforcement approprié doit être apporté à la couche intermédiaire de coulée ou au moule.
Comprendre les principes derrière les réactions de mousse est crucial. Pour maîtriser le moussage, nous devons nous efforcer d’établir dans notre esprit un modèle de réaction de mousse en utilisant les quatre équations de réaction suivantes. Grâce à la familiarité avec les variations au sein du modèle, nous cultivons une sensibilité qui nous permet de comprendre l’ensemble du processus de réaction de la mousse. Cette approche permet de structurer notre base de connaissances et nos compétences professionnelles en mousse polyuréthane. Qu'il s'agisse d'étudier activement les principes de réaction de la mousse ou de les explorer passivement pendant le processus de moussage, cela constitue pour nous un moyen essentiel d'approfondir notre compréhension des formulations et d'améliorer nos compétences.
Réaction 1
TDI + Polyéther → Uréthane
Réaction 2
TDI + Uréthane → Isocyanurate
Réaction 3
TDI + Eau → Urée + Dioxyde de Carbone
Réaction 4
TDI + Urée → Biuret (Polyurée)
01 : Les réactions 1 et 2 sont des réactions de croissance en chaîne, formant la chaîne principale de la mousse. Avant que la mousse n’atteigne les deux tiers de sa hauteur maximale, la chaîne principale s’allonge rapidement, les réactions de croissance en chaîne prédominant à l’intérieur de la mousse. A ce stade, en raison des températures internes relativement basses, les réactions 3 et 4 ne sont pas importantes.
02 : Les réactions 3 et 4 sont des réactions de réticulation, formant les branches de la mousse. Une fois que la mousse atteint les deux tiers de sa hauteur maximale, la température interne augmente et les réactions 3 et 4 s'intensifient rapidement. Durant cette étape, les réactions 1 à 4 sont vigoureuses, marquant une période critique pour la formation des propriétés moussantes. Les réactions 3 et 4 assurent la stabilité et le soutien du système de mousse. La réaction 1 contribue à l’élasticité de la mousse, tandis que les réactions 3 et 4 contribuent à la résistance à la traction et à la dureté de la mousse.
03 : Les réactions produisant du gaz sont appelées réactions moussantes. La génération de dioxyde de carbone est une réaction de moussage et la principale réaction exothermique de la mousse de polyuréthane. Dans les systèmes réactionnels contenant du méthane, la vaporisation du méthane constitue une réaction de moussage et un processus endothermique.
04 : Les réactions conduisant à la formation de constituants de mousse sont appelées réactions de gélification et englobent toutes les réactions à l'exception des réactions produisant des gaz. Cela inclut la formation d'uréthane, d'urée, d'isocyanurate et de biuret (polyurée) à partir des réactions 1 à 4.
Personne à contacter : Wenky Lau
Numéro de contact : +86-15687268672
Courriel: sales1@alforu.cn
WhatsApp:86 15687268672
Adresse de l'entreprise : NON. 18 South Industry Road, ville de Dongguan, province du Guangdong Chine