Soluções ponta a ponta, desde matérias-primas até equipamentos de produção de espuma PU e colchões.
O índice de desempenho da máquina para acolchoar colchões à venda está na posição de liderança nacional. Nossa empresa - Sabtech A Technology Limited não projetou de acordo com os padrões da indústria; nós projetamos e desenvolvemos além deles. Adotando apenas materiais sustentáveis da mais alta qualidade, o produto é feito na China com pureza, artesanato e apelo atemporal em mente. Ele atende a alguns dos padrões de desempenho mais rigorosos do mundo.
Os clientes falam muito bem de Sabtech Produtos. Eles fazem comentários positivos sobre a longa vida útil, a fácil manutenção e o excelente acabamento dos produtos. A maioria dos clientes recompra de nós porque alcançou um crescimento nas vendas e benefícios crescentes. Muitos novos clientes do exterior vêm nos visitar para fazer os pedidos. Graças à popularidade dos produtos, a influência da nossa marca também foi bastante aprimorada.
Gostaríamos de nos considerar fornecedores de um ótimo atendimento ao cliente. Para fornecer serviços personalizados em Sabtech Technology Limited, realizamos frequentemente pesquisas de satisfação do cliente. Em nossas pesquisas, depois de perguntar aos clientes como estão satisfeitos, fornecemos um formulário onde eles podem digitar uma resposta. Por exemplo, perguntamos: 'O que poderíamos ter feito diferente para melhorar sua experiência?' Sendo francos sobre o que estamos pedindo, os clientes nos fornecem algumas respostas perspicazes.
A resistência à compressão de uma espuma está relacionada a muitos fatores, como a estrutura dos vários segmentos da cadeia que compõem a espuma, as ligações químicas entre as moléculas, a cristalinidade dos polímeros, o grau de separação de fases, a estrutura dos isocianatos e a proporção de isocianatos. usado.
1 A espuma de recuperação lenta é formada pela reação de polióis de alto peso molecular e polióis de baixo peso molecular com isocianatos. Os segmentos moles formados por polióis de alto peso molecular apresentam grandes volumes, baixas densidades de reticulação e alta atividade. Eles são fáceis de comprimir e se recuperam rapidamente após a remoção da pressão. Os segmentos duros formados por polióis de baixo peso molecular apresentam pequenos volumes, altas densidades de reticulação e baixa atividade. Eles são difíceis de comprimir e também difíceis de recuperar após a remoção de forças externas. Esta característica confere às espumas a sua característica de recuperação lenta e é a base para o fabrico de espumas de recuperação lenta.
Como as propriedades dos segmentos moles e duros nas espumas de recuperação lenta são diferentes, existe um certo grau de separação de fases entre eles. Se não houver separação de fases entre os segmentos, o corpo de espuma é um todo firmemente unido em escala macro, levando ao fenômeno de "mover um fio de cabelo e todo o corpo se move", o que significa que ele encolhe como um todo quando comprimido e se expande quando a pressão é liberada. Contudo, a microestrutura da espuma determina que esta situação não pode ser alcançada completamente. Especialmente em espumas de recuperação lenta, vários segmentos de cadeia têm estruturas moleculares diferentes, distribuições desiguais de peso molecular e separação de fases inevitável. Uma ligeira separação de fases faz com que alguns segmentos duros, devido à sua baixa atividade, tenham dificuldade de recuperação durante o processo de recuperação após a remoção de forças externas. Esses “fugitivos” restringem mais ou menos a recuperação dos segmentos fracos, levando, em última análise, ao encolhimento.
2 A cristalinidade dos segmentos duros, que é mais forte que a dos segmentos moles, também é uma razão para uma recuperação deficiente. Os materiais têm compatibilidades semelhantes, que também se aplicam a espumas de recuperação lenta. Como os segmentos duros têm pontos de reticulação mais próximos e densidades de reticulação mais altas, as pequenas moléculas formadas têm maior probabilidade de se agregarem. Devido à presença de ligações de hidrogénio, estas substâncias agregadas contendo hidrogénio aumentam a cristalinidade do material, conduzindo a maiores forças de coesão. Após a compressão, forças externas alteram o estado de agregação dos segmentos da cadeia, facilitando a fusão dos grupos polares. Quando a força externa é liberada, o novo estado de agregação, devido a fortes forças coesivas, é difícil de retornar ao estado protendido, resultando no encolhimento de espumas de recuperação lenta.
3 A estrutura dos isocianatos também é um fator que afeta a resistência à compressão das espumas de recuperação lenta. O TDI é geralmente usado para produzir espumas de recuperação lenta. Como os dois grupos NCO na molécula de TDI estão nas posições 2,4 e 2,6, eles têm um certo ângulo entre eles, tornando-os propensos à deformação sob tensão. Especialmente sob condições de prensagem a quente, ocorrem deformações e perdas de calor significativas, particularmente evidentes em espumas de copas de soutien, tornando difícil a recuperação destas deformações.
4 O baixo índice de NCO dos isocianatos utilizados na preparação de espumas de recuperação lenta também é uma razão para a recuperação deficiente. O índice NCO das espumas comuns é geralmente superior a 100, enquanto nas espumas de recuperação lenta, o índice NCO está geralmente entre 85-95. Isto significa que 5-15% dos grupos hidroxila não participam da reação. Portanto, embora a superfície da espuma pareça ser uma entidade única, internamente existe uma porção considerável de segmentos de cadeia que são independentes uns dos outros.
Soluções para melhorar a resistência à compressão de espumas de recuperação lenta:
1. Use poliéter de alto EO (o chamado poliéter de agente de expansão) para substituir algum poliéter de recuperação lenta.
A O poliéter com alto teor de EO tem um baixo valor de hidroxila e um grande peso molecular. Após reagir com os isocianatos, os segmentos formados apresentam pesos moleculares maiores ou próximos daqueles formados quando o poliéter comum reage com os isocianatos, reduzindo o grau de separação de fases e cristalinidade.
B O poliéter com alto teor de EO possui segmentos macios e suaves, que podem fornecer bons efeitos de recuperação lenta. Além disso, a adição de poliéter com alto teor de EO pode efetivamente melhorar a resistência a baixas temperaturas de espumas de recuperação lenta.
2.Adicione uma pequena quantidade de poliéster modificado com poliéter para aumentar a força coesiva do material.
Os segmentos de poliéster, devido à presença de grupos éster, apresentam elevadas forças coesivas internas e boas propriedades de tração e compressão, melhorando significativamente a resistência à compressão de espumas de recuperação lenta.
3. Use uma pequena quantidade de poliéter de alta funcionalidade e alto peso molecular como agente de reticulação e substitua algum poliéter comum por poliéter de alta atividade para recuperação lenta.
Isto perturba a distribuição dos segmentos da cadeia, reduz o grau de separação de fases e aumenta o grau de reação, reduzindo a cristalinidade.
4.Use MDI ou adicione MDI ao TDI.
O MDI possui estrutura diferente do TDI e produz espumas com melhor resistência à compressão e menor perda de calor. Se estiver usando MDI, é melhor usar MDI modificado (com alta ramificação e fácil fechamento de células); O MDI líquido também pode ser utilizado, por ser de ciclização intramolecular e mais resistente à compressão. As espumas de recuperação lenta feitas com todos os MDI têm uma resistência à compressão muito melhor do que o TDI puro, e muitos fabricantes já estão usando isso.
A espuma flexível de PU retardante de chama, também conhecida como espuma flexível de PU à prova de fogo, é geralmente um material à prova de fogo sintetizado pela adição de retardadores de chama a vários materiais de poliuretano.
Função dos retardadores de chama: Eles podem absorver calor e se decompor em substâncias não combustíveis na temperatura de ignição ou próximo a ela; eles podem reagir com os produtos de combustão da espuma flexível de PU para produzir substâncias difíceis de queimar, atrasando assim a combustão e permitindo que o ponto de ignição se autoextinga.
Retardadores de chama comuns: retardadores de chama à base de bromo, retardadores de chama à base de cloro, retardadores de chama à base de fósforo e retardadores de chama inorgânicos.
Grau retardante de chama e testes para espuma flexível de PU
O grau de retardante de chama refere-se à propriedade óbvia que uma substância possui ou um material exibe após o tratamento, o que retarda significativamente a propagação das chamas.
Teste retardador de chama:
HB: O grau mais baixo de retardante de chama no padrão UL94. Requer que para amostras de 3 a 13 milímetros de espessura, a taxa de queima seja inferior a 40 milímetros por minuto; para amostras com menos de 3 milímetros de espessura, a taxa de queima é inferior a 70 milímetros por minuto; ou extinto antes de atingir a marca de 100 milímetros.
V-2: Após dois testes de combustão de 10 segundos na amostra, a chama se extingue em 60 segundos. O material combustível pode cair.
V-1: Após dois testes de combustão de 10 segundos na amostra, a chama se extingue em 60 segundos. Não deve haver queda de material combustível.
V-0: Após dois testes de combustão de 10 segundos na amostra, a chama se extingue em 30 segundos. Não deve haver queda de material combustível.
Os iniciantes estão preocupados com o fato de que, se a placa de assentamento não estiver ajustada corretamente, o líquido que flui para fora do bico pode causar oscilação frontal ou traseira, afetando o processo de formação de espuma. Dentro de dois minutos após ligar a máquina, a velocidade de reação aumenta gradualmente, às vezes exigindo ajustes na placa de assentamento. Os ajustes na placa de sedimentação são mais críticos em fórmulas de baixa densidade e alto teor de umidade (MC).
A vazão de TDI (diisocianato de tolueno) pode ser calculada para corresponder ao valor da escala, mas é recomendado realmente medir a vazão de TDI durante a primeira formação de espuma. A taxa de fluxo é muito importante; se a vazão não for precisa, todo o resto ficará uma bagunça. É melhor confiar no método mais simples e intuitivo de medir a vazão.
Ao misturar pós, o pó de pedra misturado deve ser deixado durante a noite e a produção deve começar no dia seguinte. Para ingredientes que contenham melamina e pó de pedra, recomenda-se primeiro misturar melamina com poliéter por um período de tempo antes de adicionar o pó de pedra.
Fórmulas de máquinas de espuma com câmara de mistura longa na cabeça da máquina ou mais dentes no eixo de agitação geralmente têm menos amina e temperatura do material mais baixa. Por outro lado, fórmulas de máquinas de espuma com câmara de mistura curta no cabeçote da máquina ou menos dentes no eixo de agitação geralmente têm mais amina e temperatura do material mais alta.
Para a mesma fórmula, ao alternar entre cabeçotes giratórios de pulverização dupla e cabeçotes giratórios de pulverização única com áreas de seção transversal de bico semelhantes, os requisitos para espessura de malha e camadas são semelhantes.
Para a calibração do fluxo de material menor, um método é medir o fluxo de retorno do material menor, e o outro é calibrá-lo dividindo a quantidade total utilizada pelo tempo de formação de espuma. Quando houver uma diferença significativa entre os dois métodos de calibração, confie nos dados do segundo método de calibração.
As fórmulas para espuma macia de alta qualidade geralmente estão dentro de uma faixa instável, como baixo índice de TDI, baixa proporção de água para MC, baixa dosagem de T-9 e baixa dosagem de óleo de silicone.
1. Reações Básicas
A formação da espuma de poliuretano envolve duas reações básicas: reação de formação de espuma e reação de polimerização (também chamada de reação de gel).
Reação de formação de espuma: O isocianato reage com a água para produzir uma reação de uréia dissubstituída e dióxido de carbono. A equação da reação é a seguinte:
2R-N=C=O + HOH → R-NH-CO-NH-R + CO2 ↑
O dióxido de carbono liberado atua como núcleo da bolha, fazendo com que a mistura reacional se expanda, resultando em espuma com estrutura de células abertas.
Reação de polimerização: O grupo hidroxila no poliéter sofre uma reação de polimerização gradual com isocianato para formar um aminoformato. A equação da reação é a seguinte:
R=N=C=O + R &principal; -OH → R-NH-COO — R &principal;
2. Polióis
A produção doméstica de espuma em bloco usa poliéteres de espuma macia com 3 funcionalidades e peso molecular 3.000 (valor de hidroxila 56) ou 3.500 (valor de hidroxila 48, menos comumente usado).
3. Poliisocianatos
O principal poliisocianato utilizado é o diisocianato de tolueno (TDI). Existem três tipos principais de produtos industriais TDI: 2,4-TDI puro (ou TDI100), TDI80/20 e TDI65/35. O TDI80/20 tem o menor custo de produção e é a variedade mais utilizada em aplicações industriais.
O peso molecular do TDI é 174, com dois grupos isocianato (-N=C=O) tendo um peso molecular de 84. Portanto, o teor de isocianato no TDI é de 48,28%.
A quantidade de TDI utilizada tem um impacto significativo nas propriedades da espuma. Nas formulações de espuma, o excesso de TDI é expresso como o índice de isocianato, que é a razão entre o uso real e a quantidade teórica calculada. Ao produzir espuma macia, o índice é geralmente 105-115 (100 é igual ao valor teórico calculado). Dentro desta faixa, à medida que o índice TDI aumenta, a dureza da espuma aumenta, a resistência ao rasgo diminui, a resistência à tração diminui e o alongamento na ruptura diminui. Se o índice TDI for muito alto, pode levar a células grandes e fechadas, longos tempos de maturação e queima de espuma; se o índice TDI for muito baixo, pode causar rachaduras, recuperação deficiente, baixa resistência e deformação permanente por compressão significativa.
4. Agentes de sopro
A água reagindo com o TDI para produzir dióxido de carbono é o principal agente de expansão usado na formação de espuma macia. Aumentar a quantidade de água na formulação aumentará o teor de ureia, aumentará a dureza da espuma, diminuirá a densidade da espuma e reduzirá a capacidade de suporte de carga da espuma. No entanto, o TDI reage com a água para produzir uma grande quantidade de calor. Se o teor de água for muito alto, a espuma pode queimar ou pegar fogo.
O cloreto de metileno é um agente de expansão físico com ponto de ebulição de 39.8 ° C. É um gás não inflamável que pode vaporizar durante a formação de espuma, reduzindo a densidade e a dureza da espuma. A quantidade de cloreto de metileno adicionada deve evitar a queima da espuma, garantindo ao mesmo tempo que muito não remove muito calor, afetando a cura da espuma. A quantidade de cloreto de metileno utilizada é limitada.
5. Catalisadores
O principal papel dos catalisadores é ajustar a velocidade das reações de formação de espuma e gel para alcançar um bom equilíbrio.
A trietilenodiamina (A33, uma solução a 33% de éter diisopropílico ou dipropilenoglicol) é o catalisador de amina terciária mais importante na produção de espuma macia. É 60% eficaz na promoção da reação entre isocianato e água, ou seja, reação de formação de espuma, e 40% eficaz na promoção da reação entre hidroxila e isocianato, ou seja, reação em gel.
O dilaurato de dibutilestanho (A-1) é um catalisador de amina terciária de uso geral para espuma macia. É 80% eficaz na promoção da reação de formação de espuma e 20% eficaz na promoção da reação do gel. É frequentemente usado em combinação com trietilenodiamina.
O uso inadequado de catalisadores de amina pode ter um impacto significativo no produto. Muita amina pode causar:
(1) Tempo de reação curto, aumento rápido na viscosidade inicial e fumo excessivo durante a formação de espuma.
(2) Rachaduras de espuma. Pouca amina resultará em velocidade de iniciação lenta, afetando a altura da espuma.
O dilaurato de dibutilestanho é o catalisador de estanho orgânico mais comumente usado, que é muito fácil de hidrolisar e oxidar na presença de água e catalisadores de amina terciária em misturas de poliéter.
Quanto menor for a densidade da espuma, mais estreita será a faixa ajustável do dilaurato de dibutilestanho. O efeito da dosagem de estanho na espuma é o seguinte:
Dosagem muito baixa: rachaduras na espuma.
Dosagem excessiva: Aumento rápido da viscosidade, espuma formando células fechadas e encolhendo, formando películas na parte superior e nas laterais.
6. Estabilizadores de espuma (também chamados de óleos de silicone)
Os estabilizadores de espuma reduzem a tensão superficial da mistura do sistema de espuma, estabilizando assim as bolhas, evitando o colapso da espuma e controlando o tamanho e a uniformidade dos vazios.
Aumentar a quantidade de óleo de silicone da quantidade mínima para um nível apropriado pode produzir espuma plástica bem aberta. Quando a quantidade é muito alta, a taxa de células fechadas da espuma aumenta.
7. Outros fatores de influência
Além da formulação, os parâmetros do processo e o ambiente também têm um certo impacto nas propriedades da espuma.
Temperatura da matéria-prima: Sob temperaturas ambientes relativamente normais (20-28 ° C), a temperatura da matéria-prima é controlada em 25 ± 3° C, de preferência dentro de uma faixa de ± 1° C. Também pode ser controlado dentro da faixa de 28-30 ° C.
O efeito do aumento ou diminuição da temperatura na velocidade das reações de formação de espuma e gel varia. Um aumento na temperatura resulta num aumento muito maior na reação de polimerização em comparação com a reação de formação de espuma. Os catalisadores precisam ser ajustados para mudanças de temperatura.
Para a mesma formulação, utilizando a mesma quantidade de agente de expansão, a densidade da espuma também está relacionada com a altitude. Em áreas de grande altitude, a densidade da espuma diminui sensivelmente.
A produção de espuma macia em forma de bloco normalmente utiliza o espuma de máquina de espuma em lote processo, um método de produção do tipo lacuna. Este método evoluiu da espumação manual em laboratórios. O processo envolve despejar imediatamente os materiais de reação misturados em um molde aberto semelhante a uma caixa de madeira ou metal, daí o nome "espuma em caixa". Os moldes (caixas) para espuma encaixotada podem ser retangulares ou cilíndricos. Para evitar que o bloco de espuma forme um topo abobadado, uma placa de cobertura flutuante pode ser colocada no topo da espuma durante a formação de espuma. A placa de cobertura permanece firmemente presa ao topo da espuma e move-se gradualmente para cima à medida que a espuma sobe.
Os principais equipamentos para produção de espuma in a box incluem: 1) Agitador eletromecânico, barril misturador; 2) Caixa de molde; 3) Ferramentas de pesagem, como balanças, balanças de plataforma, copos medidores, seringas de vidro e outros dispositivos de medição; 4) Cronômetro para controlar o tempo de mistura. Uma pequena quantidade de agente desmoldante é aplicada nas paredes internas da caixa para facilitar a remoção da espuma.
As vantagens de produzir espuma macia usando o método de espuma em caixa incluem: baixo investimento em equipamentos, área ocupada pequena, estrutura de equipamento simples, operação e manutenção fáceis e convenientes e produção flexível. Algumas empresas nacionais e municipais pequenas e subfinanciadas usam esse método para produzir espuma macia de poliuretano. A moldagem de espuma em caixa é um método de produção não contínuo para espuma macia, portanto a eficiência de produção é menor do que os métodos contínuos e o equipamento é operado principalmente manualmente, resultando em maior intensidade de trabalho. A capacidade de produção é limitada e há maior perda no corte de espumas plásticas. Os parâmetros do processo para espuma in a box devem ser controlados dentro de uma certa faixa porque mesmo com a mesma fórmula, as propriedades da espuma podem não ser as mesmas quando são usados parâmetros de processo diferentes. A temperatura da matéria-prima deve ser controlada em (25 ± 3) graus Celsius, velocidade de mistura de 900 a 1000 r/min e tempo de mistura de 5 a 12 segundos. O tempo de mistura da mistura de poliéter e aditivos antes da adição de TDI pode ser ajustado de forma flexível dependendo da situação, e após a adição de TDI, um tempo de mistura de 3 a 5 segundos é suficiente, sendo o segredo a mistura completa após a adição de TDI.
Durante a moldagem de espuma em caixa, deve-se prestar atenção aos seguintes aspectos:
1) Preparar antes da produção, incluindo temperatura do material e inspeção do equipamento da máquina;
2) Meça com a maior precisão possível;
3) Controle adequadamente o tempo de mistura;
4) Despeje o líquido do material misturado de forma rápida e constante, evitando força excessiva;
5) Certifique-se de que a caixa esteja colocada de forma estável, com o papel inferior plano, para evitar fluxo irregular de material durante o vazamento;
6) Quando a espuma subir, pressione suavemente a tampa para garantir que a espuma suba suavemente;
7) Os aditivos devem ser usados conforme especificado e os materiais pré-misturados não devem ser deixados por muito tempo.
Três tipos de equipamentos de espuma surgiram na moldagem de espuma em caixa. Inicialmente, diversas matérias-primas foram pesadas em um recipiente de acordo com a fórmula, misturadas em um misturador de alta velocidade e despejadas no molde de caixa para formação de espuma e modelagem. Este método muitas vezes resultava em resíduos no recipiente de mistura. Um método aprimorado usou uma bomba dosadora para transportar as matérias-primas para o barril de mistura para uma mistura uniforme. Um dispositivo mecânico fechou automaticamente o fundo do cano e ar comprimido foi usado para pressionar o material na caixa de espuma para moldagem. Ambos os métodos podem criar redemoinhos devido ao rápido influxo de materiais na caixa, o que pode causar defeitos ou depressões nos produtos de espuma. O dispositivo de espuma em caixa mais razoável é colocar um barril de mistura sem fundo diretamente no centro da caixa de espuma. Uma bomba dosadora fornece as diversas matérias-primas necessárias para a formação de espuma no cilindro de mistura. Depois de misturar por alguns segundos, o dispositivo de elevação levanta o cilindro de mistura para fora da caixa de espuma, permitindo que o material de espuma flua suavemente sobre todo o fundo da caixa. Isto evita rachaduras na espuma devido a redemoinhos de material e garante uma altura relativamente uniforme em toda a espuma.
Um dispositivo de pressão pode ser adicionado ao material de espuma em expansão para produzir espuma de topo plano, reduzindo o desperdício durante o corte. Este dispositivo é adequado para a produção de espuma macia de poliuretano do tipo poliéter e espuma de bloco macio de alto rebote. Para blocos de poliuretano de acetato de polivinila, este método não pode ser usado devido à alta viscosidade do material, e geralmente são empregados métodos contínuos.
Pessoa de contato: Wenky Lau
Número de contato: +86-15687268672
Número de correio: sales1@alforu.cn
WhatsApp: +86 15687268672
Endereço da empresa: NÃO. 18 South Industry Road, cidade de Dongguan, província de Guangdong China