حلول شاملة بدءًا من المواد الخام وحتى معدات إنتاج رغوة البولي يوريثان والمراتب.
تعتبر آلة تقشير مسار الرغوة منتجًا مميزًا في Sabtech علم الأمراض غير المرغوب فيها تقليد. تم تصميمه من قبل الخبراء الذين يتقنون جميعًا معرفة تصميم الأسلوب في الصناعة ، وبالتالي ، فهو مصمم بشكل متقن ومظهر لافت للنظر. كما يتميز بأداء طويل الأمد ووظائف قوية. من المواد الخام إلى المنتجات النهائية ، سيتم فحص كل جزء من المنتج بعناية لعدة مرات.
هناك المزيد والمزيد من المنتجات المماثلة في السوق العالمية. على الرغم من توفر المزيد من الخيارات، Sabtech لا يزال الخيار الأول لمعظم العملاء. على مدى هذه السنوات ، تطورت منتجاتنا كثيرًا لدرجة أنها سمحت لعملائنا بتوليد المزيد من المبيعات واختراق السوق المستهدفة بشكل أكثر كفاءة. تحظى منتجاتنا الآن بشعبية متزايدة في السوق العالمية.
تحظى آلة تقشير المسار الرغوي بإشادة كبيرة وقد حظيت بالكثير من الاهتمام ليس فقط بسبب أدائها وجودتها العالية ولكن أيضًا بسبب الخدمات الشخصية والمراعاة المقدمة في Sabtech علم الأمراض غير المرغوب فيها تقليد.
تؤثر العديد من العوامل على عملية الرغوة وجودة المنتج النهائي عند تصنيع رغوة البولي يوريثان المرنة. ومن بين هذه العوامل، تلعب العوامل البيئية الطبيعية مثل درجة الحرارة ورطوبة الهواء والضغط الجوي أدوارًا حاسمة. تؤثر هذه العوامل بشكل كبير على كثافة الرغوة والصلابة ومعدل الاستطالة والقوة الميكانيكية.
1. درجة الحرارة:
تفاعل رغوة البولي يوريثان حساس للغاية، حيث تعتبر درجة الحرارة عامل تحكم رئيسي. ومع ارتفاع درجة حرارة المادة، يتسارع تفاعل الرغوة. في التركيبات الحساسة، يمكن أن تشكل درجات الحرارة المرتفعة بشكل مفرط مخاطر مثل حرق القلب والاشتعال. بشكل عام، من الضروري الحفاظ على درجات حرارة ثابتة لمكونات البوليول والإيزوسيانات. تؤدي زيادة درجة الحرارة إلى انخفاض مماثل في كثافة الرغوة أثناء الرغوة.
تزيد درجات الحرارة المرتفعة، خاصة في الصيف، من سرعة التفاعل، مما يؤدي إلى انخفاض كثافة الرغوة وصلابتها، وزيادة معدل الاستطالة، مع تعزيز القوة الميكانيكية. ولمواجهة انخفاض الصلابة، يُنصح بضبط مؤشر TDI. يجب على الشركات المصنعة ضبط معلمات العملية وفقًا لتغيرات درجات الحرارة الموسمية والإقليمية لضمان استقرار جودة المنتج.
2. رطوبة الجو:
تؤثر رطوبة الهواء أيضًا على عملية رغوة رغوة البولي يوريثان المرنة. تؤدي الرطوبة العالية إلى حدوث تفاعلات بين مجموعات الأيزوسيانات الموجودة في الرغوة والرطوبة المحمولة جواً، مما يؤدي إلى انخفاض صلابة المنتج. زيادة جرعة TDI أثناء الرغوة يمكن أن تعوض هذا التأثير. ومع ذلك، يمكن أن تؤدي الرطوبة الزائدة إلى رفع درجات حرارة المعالجة، مما قد يؤدي إلى حرق القلب. يحتاج المصنعون إلى ضبط تركيبات ومعايير عملية الرغوة بعناية في البيئات الرطبة لضمان جودة المنتج واستقراره.
3. الضغط الجوي:
ويعد الضغط الجوي عاملاً مؤثراً آخر، خاصة في المناطق ذات الارتفاعات المختلفة. يؤدي استخدام نفس التركيبة على ارتفاعات أعلى إلى انخفاض كثافة منتج الرغوة نسبيًا. ويرجع ذلك إلى تغيرات الضغط الجوي التي تؤثر على انتشار الغاز وتمدده أثناء الرغوة. يجب على الشركات المصنعة العاملة في المناطق المرتفعة أن تأخذ في الاعتبار ذلك وقد تحتاج إلى تعديل التركيبات أو معلمات المعالجة لتلبية متطلبات الجودة.
في الختام، تؤثر العوامل البيئية الطبيعية بشكل كبير على عملية الرغوة وجودة المنتج النهائي لرغوة البولي يوريثان المرنة. يجب على الشركات المصنعة تعديل معلمات العملية بناءً على الظروف الموسمية والإقليمية والبيئية لضمان كثافة الرغوة المستقرة والصلابة والقوة الميكانيكية، وتلبية متطلبات ومعايير العملاء.
هيدروكسيد الألومنيوم
المعروف أيضا باسم الألومينا المائية. هيدروكسيد الألومنيوم المستخدم كمثبط للحريق هو في الأساس ألومينا ثلاثية الترطيب. يظهر على شكل مسحوق بلوري أبيض ناعم بمتوسط حجم جسيمات يتراوح من 1 إلى 20 ميكرومتر. كثافته النسبية 2.42، معامل الانكسار 1.57، و 30% pH للملاط هو 9.5-10.5. درجة حرارة بدء الجفاف هي 200 درجة مئوية، مع حرارة امتصاص تبلغ 2.0 كيلوجول/جرام.
أثناء الاحتراق، فإنه يطلق كمية كبيرة من الماء المدمج كيميائيًا، ويمتص كمية كبيرة من الحرارة، ويبطئ معدل التحلل الحراري للبوليمر، ويقلل من درجة حرارة سطح المادة، ويؤخر ويمنع احتراق الركيزة. وسوف تولد كمية كبيرة من البخار على سطح الركيزة، مما يخفف الأكسجين في منطقة الاحتراق، ويقلل من تركيز الدخان والغازات السامة القابلة للاشتعال. يمكن لأكسيد الألومنيوم المتولد أثناء الاحتراق أن يعزز تكوين طبقة واقية متفحمة على سطح البوليمر.
ميلامين
المعروف باسم الميلامين، وهو عبارة عن بلورة بيضاء أحادية الميل ذات سمية منخفضة وغير قابلة للاشتعال ونقطة انصهار تبلغ 354 درجة مئوية. يخضع للتسامي الماص للحرارة والتحلل السريع تحت حرارة عالية. عند درجات حرارة تتراوح بين 250-450 درجة مئوية، يمكنها امتصاص كمية كبيرة من الحرارة وإطلاق النيتروجين أثناء التحلل، مما يبطئ معدل احتراق المادة. وفي الوقت نفسه، فإنه يشكل طبقة حاجز متفحمة على سطح الركيزة، بمثابة مثبط للحريق. ومع ذلك، هناك بعض مشاكل التشتت، لذلك يجب استخدامه معًا. عند استخدامه كمثبط للحريق، يمكن أن يؤدي التحلل بدرجة الحرارة العالية إلى إنتاج غاز السيانيد السام.
مثبطات اللهب الفسفورية العضوية
تريس (1،3-ثنائي كلورو-2-بروبيل) فوسفات (TDCPP)
سائل لزج أصفر شاحب وشفاف. ويحتوي على 7.2% فوسفور، و49.4% كلور، ودرجة وميضه 251.7 درجة مئوية، ونقطة اشتعاله 282 درجة مئوية، ودرجة حرارة الاحتراق التلقائي 514 درجة مئوية. ويبدأ بالتحلل عند 230 درجة مئوية، وهو قابل للذوبان في الكحول والبنزين ورابع كلوريد الكربون، وما إلى ذلك. عند استخدامه بنسبة 5%، يمكن أن يحقق خصائص الإطفاء الذاتي، وعند 10%، يمكن أن يجعل المادة تنطفئ ذاتيًا أو غير قابلة للاشتعال، في حين تتمتع أيضًا بمقاومة الماء، ومقاومة الضوء، وخصائص مضادة للكهرباء الساكنة.
مقاومة للحريق بولي إيثر بوليول
1. مكونات الصيغة:
بولي إيثر بوليول 3050: Mn3000؛
بوليول بوليول مثبط اللهب: قيمة الهيدروكسيل 28، جزء الكتلة الصلبة المثبط للهب 23%؛
زيت السيليكون: ل580
محلول ثنائي أمين ثلاثي الإيثيلين: نسبة الكتلة 33%؛
محلول أوكتات القصدير: الكسر الكتلي 33%؛
TDI: الدرجة الصناعية
PLC (وحدة التحكم المنطقية القابلة للبرمجة)
إنه جهاز تحكم أوتوماتيكي مزود بذاكرة تعليمات، واجهات إدخال/إخراج رقمية أو تناظرية؛ تستخدم في المقام الأول للعمليات المنطقية والمتسلسلة والتوقيتية والعدية والحسابية مع عمليات البت؛ تستخدم للتحكم في الآلات أو عمليات الإنتاج.
محرك التردد المتغير (VFD)
VFD هو جهاز تحكم يقوم بتحويل تردد الطاقة من تردد إلى آخر باستخدام عملية التشغيل والإيقاف لأجهزة أشباه موصلات الطاقة.
يمكن بشكل عام تقسيم الدوائر الرئيسية لـ VFD إلى نوعين:
- نوع الجهد: يحول جهد التيار المستمر من مصدر جهد إلى تيار متردد في VFD، مع ترشيح مكثف في دائرة التيار المستمر.
- نوع التيار: يقوم بتحويل التيار المستمر من مصدر تيار إلى تيار متردد في VFD، مع ترشيح محث في دائرة التيار المستمر.
التبديل الكهروضوئي
يستخدم إعاقة أو انعكاس شعاع ضوء الأشعة تحت الحمراء بواسطة جسم تم اكتشافه، تم اكتشافه بواسطة الدائرة المتزامنة، لتحديد وجود أو عدم وجود الكائن. يمكنه اكتشاف أي جسم يعكس الضوء، ولا يقتصر على المعادن.
يتم استخدام مفتاح كهروضوئي عاكس للمرآة في آلة التثقيب الفراغي.
نظام المبادلات الحرارية
التحكم في درجة حرارة المواد الخام في النظام لتلبية المتطلبات.
ومع ارتفاع درجة حرارة المادة الخام بعد مرورها عبر المبادل الحراري، تزداد لزوجتها. لضمان التشغيل الطبيعي لمضخة الضغط العالي، هناك حاجة إلى مضخة تغذية خاصة. يتم حساب المتطلبات المحددة على أساس معدل التدفق ولزوجة المواد الخام.
يجب أن يكون التحكم في درجة حرارة المبادل الحراري بالقرب من رأس الخلط، بحيث يتم ربط درجة حرارة المواد الخام بمفتاح مياه التبريد للتحكم تلقائيًا في تدفق مياه التبريد لتبريد المواد الخام.
آلة تثقيب
هناك آلات تثقيب الأسطوانة، وآلات تثقيب الفراغ، وآلات تثقيب الفرشاة، مع آلات الأسطوانة التي تتمتع بأفضل تأثير للتحكم، تليها آلات التثقيب الفراغي، وآلات تثقيب الفرشاة هي الأسوأ. حاليًا، نادرًا ما يتم استخدام آلات ثقب الفرشاة.
الغرض من التثقيب هو منع تشوه المنتج.
تتحكم آلة التثقيب الأسطوانية في حجم الفجوات. إذا كانت الفجوات كبيرة جدًا، فإن تأثير التثقيب ليس جيدًا؛ إذا كانت الفجوات صغيرة جدًا، فستكون هناك علامات ضغط واضحة على المنتج.
هناك طريقتان للثقب: 1. الطريقة الكيميائية - استخدام عوامل تثقيب، 2. الطريقة الميكانيكية - باستخدام آلات التثقيب.
يجب أن تكون المنتجات مثقبة بمجرد خروجها من القالب. قد تتمدد بعض المنتجات بعد تفكيكها، وفي هذا الوقت يجب تركها لفترة قبل تثقيبها.
TPR
يمكن أن يمنع انكماش المنتج وانهيار الفقاعات. وظيفتها الأساسية هي التثقيب الفعال لتسهيل عملية التشكيل. ومع ذلك، يمكن أن يؤدي أيضًا إلى تقلبات في ILD (انحراف حمل المسافة البادئة)؛ يؤثر TPR بشكل مباشر على سرعة ارتفاع الرغوة.
صمام تنظيم الضغط الحلقي
إنه ضروري لموازنة ضغط النظام في نظام التحكم ويجب وضعه بالقرب من الفوهة قدر الإمكان. إذا كان بعيدًا عن الفوهة، فقد تحدث تقلبات في الضغط، مما يؤدي إلى عدم استقرار النظام وعدم استقرار المنتجات.
في الإنتاج الصناعي الحديث، تلعب رغوة البولي يوريثان المرنة دورًا مهمًا في مجالات مختلفة مثل الأثاث ومقاعد السيارات ونعال الأحذية. ومع ذلك، لا يمكن إغفال نقاط المراقبة الفنية الرئيسية لإنتاج منتجات بلاستيكية رغوية مرنة عالية الجودة من مادة البولي يوريثان. فيما يلي العديد من النقاط الفنية الرئيسية في عملية الإنتاج:
التحكم في ثنائي إيزوسيانات التولوين (TDI):
النسبة الأيزومرية المثالية لـ TDI هي 80/20. إذا تم تجاوز هذه النسبة، فقد يؤدي ذلك إلى تكوين خلايا كبيرة ومغلقة في الرغوة، مما يؤدي إلى إطالة وقت المعالجة. خاصة في إنتاج منتجات الرغوة منخفضة الكثافة ذات الكتل الكبيرة، يمكن أن تؤدي نسبة الأيزوميرات المفرطة إلى تأخير إطلاق الحرارة، مما قد يتسبب في بقاء درجة حرارة مركز الرغوة مرتفعة لفترة طويلة، مما يؤدي إلى الكربنة وحتى الاشتعال. إذا كانت نسبة الأيزومرية منخفضة جدًا، ستنخفض كثافة منتج الرغوة ومرونته، وقد تظهر شقوق دقيقة على سطح الرغوة، مما يؤدي إلى ضعف إمكانية تكرار العملية.
إضافة عوامل النفخ الخارجية:
لا تعمل عوامل النفخ الخارجية (الماء) على تقليل كثافة الرغوة فحسب، بل تعمل أيضًا على تحسين نعومة المنتج وتساعد على إزالة حرارة التفاعل. لمنع الكربنة المركزية في عملية الرغوة لمنتجات الرغوة ذات الكتل الكبيرة، تتم عادةً إضافة كمية معينة من الماء. ومع ذلك، مع زيادة كمية الماء، يجب أيضًا زيادة كمية المحفز أيضًا؛ وإلا فقد يؤدي ذلك إلى إطالة وقت الرغوة بعد المعالجة. بشكل عام، لكل 5 أجزاء زيادة في الماء، يجب إضافة 0.2 إلى 0.5 جزء من زيت السيليكون.
نسبة المحفز:
يتم استخدام محفزات القصدير العضوي والأمين الثلاثي بشكل شائع للتحكم في تفاعلات NCO-OH وNCO-H2O. ومن خلال ضبط نسبة المحفزات المختلفة، يمكن التحكم في نمو سلاسل البوليمر وتفاعل الرغوة. في ظل كثافات معينة للمنتج، فإن اختيار نسبة المحفز المناسبة يمكن أن يتحكم في معدل الخلية المفتوحة للرغوة، وحجم الخلية، وقيمة الحمل الفارغ. زيادة كمية محفز القصدير العضوي يمكن أن تنتج بشكل عام رغاوي ذات أحجام خلايا أصغر، ولكن الاستخدام المفرط قد يزيد من معدل الخلايا المغلقة. ومن الضروري تحديد جرعة المحفز الأمثل من خلال التجارب لتحقيق أفضل أداء لمنتجات الرغوة.
مثبتات الرغوة:
يتمثل دور مثبتات الرغوة في تقليل التوتر السطحي للمادة، مما يجعل جدار طبقة الرغوة مرنًا ويمنع تمزق جدار الرغوة حتى يؤدي نمو السلسلة الجزيئية وتفاعلات الارتباط المتقاطع إلى تصلب المادة. لذلك، تلعب مثبتات الرغوة دورًا حاسمًا في إنتاج إسفنجة البولي إيثر ذات الخطوة الواحدة ويجب التحكم الصارم في استخدامها.
التحكم في درجة الحرارة:
إن تفاعل توليد الرغوة حساس للغاية لدرجة الحرارة، وسوف تؤثر التغيرات في درجة حرارة المواد والرغوة على عمليات الرغوة والخصائص الفيزيائية. لذلك، يعد التحكم في درجة الحرارة أحد الشروط المهمة لضمان عمليات الرغوة المستقرة. يتم التحكم في درجة حرارة المادة بشكل عام عند 20-25 ° C.
اثارة السرعة والوقت:
تؤثر سرعة التحريك والوقت على كمية الطاقة المدخلة أثناء عملية الرغوة. إذا كان التحريك غير متساوٍ، فقد يظهر عدد كبير من الفقاعات على سطح الرغوة، مما يؤدي إلى حدوث عيوب مثل التشقق. أثناء خلط المكون A، تكون السرعة 1000r/min؛ بعد إضافة المكون B إلى المكون A، فإن سرعة التحريك عالية السرعة تكون 2800-3500r/min لمدة 5-8 ثواني.
باختصار، تشمل التقنيات الرئيسية لإنتاج رغوة البولي يوريثان المرنة التحكم في TDI، وإضافة عوامل نفخ خارجية، وضبط نسب المحفز، واستخدام مثبتات الرغوة، والتحكم في درجة الحرارة، والتحكم في سرعة ووقت التحريك. إن التحكم السليم في هذه المعلمات التقنية يمكن أن يضمن إنتاج منتجات بلاستيكية رغوية مرنة من مادة البولي يوريثين ذات جودة مستقرة وعالية الأداء.
في حوادث الحرائق السنوية، تكون نسبة كبيرة من حالات الاشتعال ناتجة عن الرغوة، بما في ذلك حرائق الأرائك والإشعال المختلف الناتج عن العبوات الناعمة. تحدث هذه الحوادث بشكل متكرر للغاية. كيف يمكننا القضاء على مثل هذه الأحداث أو تقليلها بشكل أساسي؟
أحد الأساليب الفعالة هو البدء من المواد المصدرية، تمامًا مثل معالجة السبب الجذري للمرض. إن إضافة مثبطات اللهب إلى رغوة البولي يوريثان يمكن أن يمنع الاشتعال بشكل فعال.
الآن، دعونا نفهم الرغوة المثبطة للهب:
الرغوة المقاومة للهب، والمعروفة أيضًا بالرغوة المقاومة للحريق، لها اسم كيميائي لمادة رغوة البولي يوريثان، والتي تنقسم إلى رغوة ناعمة (تستخدم بشكل أساسي للأثاث) ورغوة صلبة (تستخدم بشكل أساسي للعزل). بشكل عام، إنها مادة مقاومة للحريق يتم تصنيعها عن طريق إضافة مثبطات اللهب المختلفة إلى مادة البولي يوريثين.
إن تأثير مثبط الحريق للمنتج يلبي متطلبات ASTM Standard 117 والمعايير الوطنية. طريقة الاستخدام هي نفس طريقة استخدام الرغوة العادية.
يعد احتراق البوليمرات تفاعل أكسدة معقدًا ومكثفًا للغاية. تحدث هذه العملية عندما يتم تسخين البوليمر بشكل مستمر بواسطة مصدر حرارة خارجي، مما يؤدي إلى بدء تفاعل متسلسل جذري حر مع الأكسجين الموجود في الهواء. يؤدي ذلك إلى إطلاق بعض الحرارة، مما يزيد من تكثيف تحلل البوليمر، ويولد المزيد من الغازات القابلة للاشتعال، ويجعل الاحتراق أكثر خطورة.
هناك طريقتان لتثبيط لهب الرغوة المقاومة للحريق:
الأول هو إدخال عناصر مثبطة للهب كيميائيًا أو مجموعات تحتوي على عناصر جديدة مثبطة للهب في التركيب الجزيئي للرغوة. الطريقة الأخرى هي إضافة مركبات تحتوي على عناصر مثبطة للهب إلى الرغوة. تستخدم الطريقة الأولى مواد مثبطة للهب تسمى مثبطات اللهب التفاعلية، بينما تستخدم الطريقة الأخيرة مواد تسمى مثبطات اللهب المضافة.
وفي الوقت الحالي، فإن الغالبية العظمى من مثبطات اللهب المستخدمة في الرغوة عبارة عن مثبطات لهب مضافة، في حين تستخدم مثبطات اللهب التفاعلية بشكل رئيسي في الراتنجات المتصلدة بالحرارة مثل راتنجات الإيبوكسي والبولي يوريثان. وتتمثل الوظيفة الأساسية لمثبطات اللهب في التدخل في العناصر الأساسية الثلاثة اللازمة للاحتراق: الأكسجين والحرارة والوقود. ويمكن تحقيق ذلك بشكل عام من خلال الوسائل التالية:
يمكن أن تنتج مثبطات اللهب غازات أثقل غير قابلة للاشتعال أو سوائل مغلية تغطي سطح الرغوة، مما يقطع الاتصال بين الأكسدة والوقود.
عن طريق امتصاص الحرارة من خلال التحلل أو التسامي، تعمل مثبطات اللهب على تقليل درجة حرارة سطح البوليمر.
تولد مثبطات اللهب كمية كبيرة من الغازات غير القابلة للاشتعال، مما يخفف من تركيز الغازات القابلة للاشتعال والأكسجين في منطقة الاحتراق.
تلتقط مثبطات اللهب الجذور الحرة الجذرية، مما يقطع التفاعل المتسلسل للأكسدة.
شخص الاتصال: وينكي لاو
رقم الاتصال: +86-15687268672
البريد الإلكتروني: sales1@alforu.cn
WhatsApp:86 15687268672
عنوان الشركة: NO. 18 طريق الصناعة الجنوبي، مدينة دونغقوان، مقاطعة قوانغدونغ الصينية