حلول شاملة بدءًا من المواد الخام وحتى معدات إنتاج رغوة البولي يوريثان والمراتب.
Sabtech تكرس شركة Technology Limited جهودها لتوفير منتجات عالية الجودة، مثل آلة قطع مقاطع الرغوة. منذ البداية ، التزمنا بالاستثمار المستمر في البحث والتطوير في المنتج والتكنولوجيا وفي عملية الإنتاج وفي مرافق التصنيع لتحسين جودة المنتج باستمرار. لقد طبقنا أيضًا نظامًا صارمًا لإدارة الجودة للتحكم في الجودة خلال عملية الإنتاج بأكملها ، والتي من خلالها سيتم القضاء على جميع العيوب تمامًا.
لقد حققت شركتنا تقدمًا كبيرًا في تحسين مكانتنا الدولية، كما أنشأت علامة تجارية خاصة بنا، وهي: Sabtech. ولا نتوقف أبدًا عن محاولة تحقيق اختراقات في مفهومنا لتصميم جديد يلبي مبدأ التوجه نحو السوق بحيث تزدهر أعمالنا الآن.
Sabtech Technology Limited هو موقع يمكن للعملاء من خلاله الحصول على معلومات أكثر تفصيلاً عنا. على سبيل المثال، يمكن للعملاء معرفة مجموعة كاملة من تدفق الخدمة باستثناء مواصفات منتجاتنا المصنوعة بشكل رائع مثل آلة قطع مقاطع الرغوة. نعد بتسليم سريع ويمكن أن نستجيب للعملاء بسرعة.
في ديسمبر 2021، تلقينا استفسارًا من السيد. هايرون في ماليزيا. السيد. شركة Hairun هي شركة تصنيع مراتب تحتاج إلى إنتاج رغوة مُعاد ربطها. كانت لديه معرفة محدودة حول استخدام الماكينة واختيارها، ولم تكن لديه خبرة سابقة في عملية الإنتاج. لذلك، كان بحاجة إلى التوجيه من الخبراء الذين يمكنهم مساعدته من الألف إلى الياء.
لقد شرحنا بشكل منهجي مبادئ إنتاج الرغوة للسيد. Hairun مع المواد والمعدات اللازمة. لقد أخذناه أيضًا في جولة في مصنعنا لتقديم فهم واضح لعملية الإنتاج بأكملها.
بعد فهم السيد. حسب تفضيلات شركة Hairun للرغوة المعاد ربطها، بما في ذلك الكثافة والنعومة وأسعار السوق، فقد قدمنا له الحل الأنسب لإنتاج الرغوة. وقمنا أيضًا بتزويده بمعلومات حول تكاليف إنتاج الرغوة ومقارنة أسعار المواد الخام لتكون مرجعًا له.
بناءً على احتياجات العميل، والميزانية، وتخطيط المصنع الحالي، قمنا بتصميم خطة فعالة من حيث التكلفة لتكوين الماكينة وتخطيطها لمنشأته، بما في ذلك تقييم تكاليف بدء التشغيل.
بمجرد تركيب الآلات بنجاح، قدم فريق المهندسين لدينا السيد. Hairun مع تدريب فردي على إنتاج الرغوة. وعندما نجح في إنتاج الرغوة التي أرادها لأول مرة، اتصل بنا وقال: "أنا سعيد بالبكاء، شكرًا جزيلاً لكم!" بعد ذلك، قام بشراء آلة الرغوة منا واستمر في إعادة طلب المواد الكيميائية الرغوية من شركتنا.
بالنسبة للعديد من المؤسسات الصغيرة، على الرغم من أن خط الإنتاج المستمر لرغوة البولي يوريثان المرنة يوفر إنتاجًا عاليًا، إلا أن التكاليف مرتفعة جدًا أيضًا، وقد لا يتطلب السوق المستهدف مثل هذه الكميات الكبيرة. ونتيجة لذلك، أصبحت خطوط الإنتاج غير المستمرة لرغوة البولي يوريثان المرنة هي الخيار المفضل لديهم. فيما يلي مقدمة لخط الإنتاج غير المستمر لرغوة البولي يوريثان المرنة:
1. معدات عملية رغوة الصندوق
لقد تم تطوير عملية ومعدات رغوة الصناديق كتقنية جديدة لتلبية احتياجات منشآت إنتاج رغوة البولي يوريثان صغيرة الحجم. وهو يعتمد على تقنيات إنتاج الرغوة المخبرية واليدوية، وهي في الأساس نسخة مطورة من أساليب الرغوة المختبرية. لقد مرت هذه العملية بثلاث مراحل تطوير. في البداية، تم وزن جميع المواد المكونة بالتسلسل وإضافتها إلى حاوية أكبر، تليها إضافة TDI. بعد الخلط السريع، يُسكب الخليط على الفور في قالب صندوقي كبير. كانت هذه الطريقة ذات كثافة عمالية عالية، وتنبعث منها تركيزات عالية من الغازات السامة، وتشكل مخاطر صحية كبيرة على المشغلين. بالإضافة إلى ذلك، فإن تناثر المواد أثناء الصب من شأنه أن يجذب كمية كبيرة من الهواء، مما يؤدي إلى تكوين فقاعات هواء كبيرة داخل هيكل الرغوة وحتى التسبب في تشقق الرغوة. علاوة على ذلك، كانت هناك كمية كبيرة من النفايات المتبقية، مما أدى إلى نفايات مادية كبيرة وارتفاع تكاليف الإنتاج
وفي وقت لاحق، تم دمج مضخات القياس لنقل المواد إلى برميل الخلط بقاع يفتح تلقائيًا. بعد الخلط بسرعة عالية، سيتم فتح اللوحة السفلية لبرميل الخلط، وسيقوم الهواء المضغوط بطرد المواد بسرعة إلى القالب لتوسيع الرغوة. ومع ذلك، عانى هذا النهج من هياكل مسام الرغوة غير المستوية بسبب التدفق السريع للمواد، مما أدى إلى هياكل الرغوة الدوامة ومشاكل في الجودة مثل الشقوق على شكل هلال. المرحلة الثالثة من تحسين العملية هي جهاز رغوة الصندوق الذي يتم اعتماده في الغالب اليوم. مبدأ الرغوة الأساسي موضح في الصورة
(أ) قياس المواد الخام وخلطها (ب) الرغوة (ج) ترتفع الرغوة إلى الحد الأقصى للارتفاع
1 - برميل خلط المواد القابل للرفع؛ 2 - قالب صندوق قابل للتجميع؛ 3 - اللوحة العلوية للصندوق العائم؛ 4- جسم فوم
الصورة 1: رسم تخطيطي لمبدأ رغوة الصندوق
تتكون معدات الإنتاج الصناعي لرغوة الصناديق بشكل أساسي من خزانات المواد الخام، ووحدات مضخة القياس، وبراميل الخلط القابلة للرفع، وقوالب الصناديق الخشبية القابلة للتجميع. كما هو موضح في الرسم التخطيطي لمعدات رغوة الصندوق المصنعة بواسطة Hennecke (الصورة 2)، يتم تخزين المواد الخام الرغوية في خزانات ويتم تنظيمها بواسطة أجهزة التحكم للوصول إلى نطاق درجة حرارة المعالجة المطلوبة، وعادة ما يتم الاحتفاظ بها عند درجة حرارة 23°C ± 3°C. بالتتابع، تقوم مضخة القياس بحقن البولي إيثر بوليول، المحفز، المواد الخافضة للتوتر السطحي، عوامل الرغوة، إلخ، في أسطوانة الخلط لمدة التحريك من 30 إلى 60 دقيقة. بعد ذلك، وفقًا للصيغة، يتم إدخال TDI، إما مباشرة أو من خلال حاوية وسيطة بمفتاح سفلي. الخلط الفوري يتبع إضافة TDI. اعتمادًا على المواد والتركيبة، يتم التحكم في سرعة التحريك عادةً عند 900 إلى 1000 دورة في الدقيقة (r/min)، مع وقت تحريك يتراوح من 3 إلى 8 ثوانٍ. بعد التحريك، يتم رفع برميل الخلط بسرعة. الجزء السفلي من البرميل يفتقر إلى قاع ويتم وضعه على اللوحة السفلية لصندوق القالب عند خفضه، باستخدام حلقة إغلاق عند الحافة السفلية للبرميل لمنع تسرب المواد.
عند الرفع، يمكن نشر الملاط الممزوج جيدًا مباشرة وتفريقه على اللوحة السفلية لقالب الصندوق، مما يسمح بارتفاع الرغوة الطبيعية. لمنع تكوين سطح مقبب على الجزء العلوي أثناء الرغوة، تم تجهيز لوحة القالب العلوية التي تتوافق مع مساحة القالب وتسمح بحركة الحد الأعلى. يتكون صندوق القالب بشكل أساسي من ألواح خشبية صلبة، مع اللوحة السفلية المثبتة على عربة نقل القالب المتحركة. جميع الألواح الجانبية الأربعة قابلة للتجميع، وتتميز بآليات قفل سريعة الفتح والإغلاق. الجوانب الداخلية للألواح مطلية بعوامل تحرير قائمة على السيليكون أو مبطنة بمادة فيلم البولي إيثيلين لمنع الالتصاق. بعد 8 إلى 10 دقائق من النضج القسري داخل الصندوق، يتم فتح الألواح الجانبية لصندوق القالب، مما يسمح بإزالة الرغوة المرنة على شكل كتلة. وبعد 24 ساعة إضافية من النضج، يمكن أن تخضع كتل الرغوة هذه للقطع وإجراءات ما بعد المعالجة الأخرى.
1 - خزان المواد الخام. 2 - وحدة مضخة القياس. 3 - خزانة التحكم. 4 - خلط البرميل مع جهاز الرفع. 5 - صندوق الرغوة. 6 - المنتج النهائي الرغوي؛ 7- اللوحة العائمة
الصورة 2: معدات رغوة الصناديق المصنعة بواسطة Hennecke (BFM100/BFM150)
تتميز عملية ومعدات رغوة الصندوق بخصائص مثل التشغيل البسيط، وهيكل المعدات المدمج والمباشر، والاستثمار المنخفض، والبصمة الصغيرة، والصيانة المريحة. هذه الميزات تجعلها مناسبة بشكل خاص للمؤسسات الصغيرة العاملة في الإنتاج المتقطع لرغوة الكتل منخفضة الكثافة. ومع ذلك، فإن عيوبها واضحة أيضًا: انخفاض كفاءة الإنتاج، وبيئة إنتاج أقل ملاءمة، والتركيز العالي للغازات السامة المنبعثة في الموقع، مما يستلزم استخدام أنظمة تنقية الغازات السامة والعوادم عالية الفعالية.
لتعزيز كفاءة الخلط، أضافت بعض الشركات عدة حواجز رأسية ومتساوية البعد إلى الجدران الداخلية لبرميل الخلط. هذه الحواجز، جنبا إلى جنب مع المحرضات الحلزونية عالية السرعة، تسهل الخلط عالي السرعة. يمكن لهذا النهج أن يقلل إلى حد ما من تأثيرات التدفق الصفحي في سائل الخلط ويحسن كفاءة الخلط. مثال على ذلك هو منتجنا SAB-BF3302. لمعرفة مظهر المنتج ومواصفاته الفنية، يرجى الرجوع إلى الصورة 3.
الصورة 3: آلة تعبئة العلب الأوتوماتيكية بالكامل (Sabtech Technology Limited)
يأتي خط الإنتاج هذا مزودًا بكل من التحكم الآلي الكامل بالكمبيوتر وأوضاع التحكم اليدوي. إنها مناسبة لإنتاج رغوة البولي يوريثان المرنة بكثافات تتراوح من 10 إلى 60 كجم/سم. الحد الأقصى لإخراج الرغوة: 180 لتر. ارتفاع الرغوة: 1200 مم. قوة الخلط: 7.5 كيلو واط. الطاقة الإجمالية: 35 كيلو واط.
2. معدات تحضير الرغوة ذات الخلية المفتوحة
رغوة البولي يوريثان ذات الخلية المفتوحة هي منتج رغوي وظيفي تم تطويره في الثمانينيات. إنها تمتلك مسامية عالية، بنية شبكية متميزة، ليونة، تهوية، وقوة ميكانيكية جيدة. إنه يجد تطبيقًا واسعًا كمواد ترشيح ممتازة وامتصاص الصدمات في وسائل النقل، والأجهزة، وأغشية ترشيح المواد الطبية، وكحاملات محفزة في الصناعة الكيميائية. إن ملئه في خزانات وقود الطائرات يمكن أن يمنع تقليب الزيت ويقلل من خطر الانفجارات. يؤدي تشريبه بملاط السيراميك والتلبيد بدرجة حرارة عالية إلى إنتاج مادة مرشح سيراميكية مفتوحة الخلية جديدة تستخدم في الصناعة المعدنية.
يتضمن تحضير رغوة البولي يوريثان ذات الخلية المفتوحة طرقًا مثل التحلل المائي بالبخار والنقع القلوي والانفجار. في الإنتاج الصناعي، يتم استخدام طريقة الانفجار في الغالب. في البداية، يتم تحضير رغوة البولي يوريثان ذات حجم مسام محدد باستخدام عملية الرغوة الصندوقية. وبعد ذلك، يتم وضعها في معدات شبكة الانفجار المخصصة، ويتم ملؤها بالغاز المتفجر، ويتم إشعالها بعد ملء الجسم الرغوي بالكامل. من خلال الاستفادة من طاقة الصدم والحرارة المرتفعة الناتجة عن معاملات الانفجار، تتمزق جدران خلايا رغوة البولي يوريثان وتندمج على جدران الخلايا، لتشكل بنية شبكية متميزة، كما هو موضح في الصورة 4.
الصورة 4: رغوة الخلية المفتوحة المتصلة بالشبكة بشكل واضح
تُستخدم طرق مثل التحلل المائي بالبخار أو النقع القلوي لتحضير رغوة الخلية المفتوحة. ومع ذلك، هناك قضايا انخفاض الكفاءة، وسوء الجودة، والتلوث البيئي مع هذه الأساليب. يتم استخدامها بشكل رئيسي في الإنتاج على نطاق صغير مثل اختبار العينات المعملية. يستخدم الإنتاج على نطاق واسع في المقام الأول طريقة الانفجار.
شركة ATL Schubs GmbH، وهي شركة ألمانية، متخصصة في البحث والتطوير للرغاوي الشبكية من مادة البولي يوريثان وتقوم بتصنيع آلات تفجير الرغوة ReticulatusTM. غرفة الانفجار لمعدات تفجير الرغوة الشبكية تأتي في شكلين: أسطواني ومستطيل. الأول مناسب للرغوة الأسطوانية، بينما الأخير أكثر تنوعًا. يمكن استخدامه ليس فقط للرغوة المربعة ولكن أيضًا لمعالجة الرغوة الشبكية من الرغوة الأسطوانية، كما هو موضح في الصورة 5. غرفة الانفجار مصنوعة من صفائح فولاذية عالية الجودة بسمك 100 ملم. يتم التحكم في التشغيل عن طريق مودم الكمبيوتر، مما يوفر ميزات مثل الفتح والإغلاق التلقائي، والقفل التلقائي، والتشغيل التلقائي، والتنبيهات التلقائية. بالإضافة إلى ذلك، يمكن تسهيل تصميم البرنامج وتعديله عن بعد من خلال أجهزة استشعار نقل البيانات.
الصورة 5: معدات معالجة شبكية رغوة البولي يوريثان (ATL Schubs)
أثناء الإنتاج، يتم دفع الأجسام الرغوية التي يتراوح طولها من 3 إلى 6 أمتار والمخصصة للشبكات إلى غرفة الانفجار. يتم إغلاق باب الغرفة هيدروليكيًا، ويتم إخلاء الهواء داخل الغرفة باستخدام مضخة التفريغ. تحت التحكم بالكمبيوتر، يتم إدخال نسبة دقيقة من غازي الأكسجين والهيدروجين، ويتم ضبط نسبة خليط الغاز ميكانيكيًا بناءً على عوامل مثل نوع عينة الرغوة ومتطلبات حجم الشبكة
تقوم أجهزة الاستشعار بمراقبة العملية بشكل مستمر، مما يضمن أن تكون جميع معلمات العملية ضمن الظروف المحددة قبل بدء التفجير المتحكم فيه. القوة المتفجرة وشدة اللهب الناتجة عن الانفجار تخترق الجسم الرغوي بأكمله، مما يخلق بنية شبكية متميزة. بعد التشكيل، يتم تبريد جسم الرغوة، ويتم تطهير المواد المتبقية وغازات النفايات باستخدام النيتروجين، ويمكن بعد ذلك فتح غرفة الضغط لاسترداد الرغوة الشبكية. تستغرق العملية برمتها حوالي 8 إلى 10 دقائق. يقع قطر مسام الرغوة الشبكية ضمن نطاق 10 إلى 100 مسام في البوصة (ppi) (ملاحظة: تشير ppi إلى عدد المسام في بوصة واحدة).
ما ورد أعلاه يوفر نظرة ثاقبة لعملية الإنتاج غير المستمر لرغوة البولي يوريثان المرنة. آمل أن تكون هذه المعلومات مفيدة لك.
تؤثر العديد من العوامل على عملية الرغوة وجودة المنتج النهائي عند تصنيع رغوة البولي يوريثان المرنة. ومن بين هذه العوامل، تلعب العوامل البيئية الطبيعية مثل درجة الحرارة ورطوبة الهواء والضغط الجوي أدوارًا حاسمة. تؤثر هذه العوامل بشكل كبير على كثافة الرغوة والصلابة ومعدل الاستطالة والقوة الميكانيكية.
1. درجة الحرارة:
تفاعل رغوة البولي يوريثان حساس للغاية، حيث تعتبر درجة الحرارة عامل تحكم رئيسي. ومع ارتفاع درجة حرارة المادة، يتسارع تفاعل الرغوة. في التركيبات الحساسة، يمكن أن تشكل درجات الحرارة المرتفعة بشكل مفرط مخاطر مثل حرق القلب والاشتعال. بشكل عام، من الضروري الحفاظ على درجات حرارة ثابتة لمكونات البوليول والإيزوسيانات. تؤدي زيادة درجة الحرارة إلى انخفاض مماثل في كثافة الرغوة أثناء الرغوة.
تزيد درجات الحرارة المرتفعة، خاصة في الصيف، من سرعة التفاعل، مما يؤدي إلى انخفاض كثافة الرغوة وصلابتها، وزيادة معدل الاستطالة، مع تعزيز القوة الميكانيكية. ولمواجهة انخفاض الصلابة، يُنصح بضبط مؤشر TDI. يجب على الشركات المصنعة ضبط معلمات العملية وفقًا لتغيرات درجات الحرارة الموسمية والإقليمية لضمان استقرار جودة المنتج.
2. رطوبة الجو:
تؤثر رطوبة الهواء أيضًا على عملية رغوة رغوة البولي يوريثان المرنة. تؤدي الرطوبة العالية إلى حدوث تفاعلات بين مجموعات الأيزوسيانات الموجودة في الرغوة والرطوبة المحمولة جواً، مما يؤدي إلى انخفاض صلابة المنتج. زيادة جرعة TDI أثناء الرغوة يمكن أن تعوض هذا التأثير. ومع ذلك، يمكن أن تؤدي الرطوبة الزائدة إلى رفع درجات حرارة المعالجة، مما قد يؤدي إلى حرق القلب. يحتاج المصنعون إلى ضبط تركيبات ومعايير عملية الرغوة بعناية في البيئات الرطبة لضمان جودة المنتج واستقراره.
3. الضغط الجوي:
ويعد الضغط الجوي عاملاً مؤثراً آخر، خاصة في المناطق ذات الارتفاعات المختلفة. يؤدي استخدام نفس التركيبة على ارتفاعات أعلى إلى انخفاض كثافة منتج الرغوة نسبيًا. ويرجع ذلك إلى تغيرات الضغط الجوي التي تؤثر على انتشار الغاز وتمدده أثناء الرغوة. يجب على الشركات المصنعة العاملة في المناطق المرتفعة أن تأخذ في الاعتبار ذلك وقد تحتاج إلى تعديل التركيبات أو معلمات المعالجة لتلبية متطلبات الجودة.
في الختام، تؤثر العوامل البيئية الطبيعية بشكل كبير على عملية الرغوة وجودة المنتج النهائي لرغوة البولي يوريثان المرنة. يجب على الشركات المصنعة تعديل معلمات العملية بناءً على الظروف الموسمية والإقليمية والبيئية لضمان كثافة الرغوة المستقرة والصلابة والقوة الميكانيكية، وتلبية متطلبات ومعايير العملاء.
إن درجة الحرارة الداخلية للرغوة لا غنى عنها مثل الحيوية بالنسبة للإنسان. إذا كانت درجة حرارة الإسفنجة بعد المعالجة منخفضة جدًا، فلن تكون خصائصها الفيزيائية مثالية، وستكون هناك تقلبات كبيرة في هذه الخصائص.
بمجرد أن يتم تطوير الرغوة بشكل جيد، ترتفع درجة حرارتها الداخلية بسرعة إلى أكثر من 120 درجة مئوية بسبب التفاعل الطارد للحرارة الذي يحدث في ظل ظروف تبديد الحرارة السيئة، مما يصبح أحد مخاطر الحريق.
تعتبر درجة الحرارة الداخلية للرغوة أمرًا حاسمًا لتشكيل خصائصها الفائقة. تُظهِر الرغوة الناضجة عند درجات حرارة خارجية محددة خواص فيزيائية فائقة بشكل استثنائي مثل قوة الشد. يقوم البعض بحساب درجة حرارة الرغوة من خلال الصيغ، بينما يستخدم البعض الآخر برنامجًا لإدخال الصيغ وحساب درجة الحرارة الداخلية للرغوة تلقائيًا. إذًا، ما هي العوامل التي تؤثر على درجة الحرارة الداخلية للرغوة؟ هل من المهم معرفة هذه العوامل؟ يشبه الأمر مدى دقة كاميرات الهواتف الحديثة، لكن هل هذا يجعل التصوير الفوتوغرافي الاحترافي عديم الفائدة؟ هل التعديلات مثل فتحة العدسة والبعد البؤري ووقت التعرض لا معنى لها؟ للتحكم بشكل أفضل في الأشياء، يجب على المرء أن يفهم المزيد من المتغيرات الرئيسية لذلك الشيء. لنبدأ بالمبادئ الأساسية لفهم التغيرات في درجة حرارة الرغوة الداخلية.
أولاً، دعونا نفهم بعض القواعد الأساسية.
تتناسب درجة حرارة الفضاء بشكل مباشر مع كمية الطاقة الحرارية المحقونة في ذلك الفضاء وتتناسب عكسيا مع حجمه.
على سبيل المثال، إذا تم توزيع 10 كيلوجول من الحرارة في مساحة 8 لترات، فإن درجة حرارة ذلك الفضاء تبلغ 20 درجة مئوية. إذا تم توزيع نفس 10 كيلو جول من الحرارة في مساحة 4 لتر، تصبح درجة الحرارة 40 درجة مئوية.
تتناسب كمية الحرارة المدخلة بشكل مباشر مع قيمة مدخلات الحرارة وسرعة إدخال الحرارة.
على سبيل المثال، إذا تم إطلاق 100 كيلوجول من الحرارة بسرعة "v"، فإن مدخلات الحرارة هي "A". إذا تم إطلاق نفس 100 كيلوجول من الحرارة بسرعة 2 فولت، يصبح دخل الحرارة 2A.
حجم الفضاء يتناسب طرديا مع درجة الحرارة المطلقة.
على سبيل المثال، مساحة 1 لتر عند 0 درجة مئوية تصبح 1.366 لتر عند 100 درجة مئوية لأن (273.15 + 100)/(273.15 + 0) = 1.366.
حجم الفضاء يتناسب عكسيا مع الضغط الجوي.
يجب أن يؤخذ في الاعتبار التأخر في تبخير الميثان.
بعد ذلك، دعونا نتفحص مدى تأثير الضبط الدقيق للصيغة على درجة حرارة الرغوة الداخلية.
نظرًا لأن هذا يعد ضبطًا دقيقًا، فإننا نقدر أن البيئة المحيطة تظل دون تغيير قبل وبعد التعديلات. دعونا ننظر في آثار ضبط الماء والميثان على درجة حرارة الرغوة الداخلية.
على سبيل المثال، إذا كانت الصيغة تزيد من غاز الميثان بنسبة 5%، فيمكننا التأكد من أن درجة حرارة الرغوة الداخلية تنخفض لأن تبخير الميثان يمتص الحرارة، مما يقلل من مدخلات الحرارة إلى الرغوة، ويزيد من المساحة لاستيعاب الحرارة. وبالمثل، إذا تمت زيادة محتوى الماء بنسبة 5%، فإن الماء المضاف يطلق حرارة عند الحقن في الرغوة، مما يزيد من مدخلات الحرارة، ويولد تفاعل الماء المضاف غازًا، مما يزيد من المساحة المخصصة للحرارة. فهل درجة حرارة الرغوة الداخلية تزيد أم تنخفض في هذه الحالة؟ تشير التجربة إلى أن درجة حرارة الرغوة الداخلية ترتفع. يشير هذا إلى أن زيادة مدخلات الحرارة بسبب هذا التغيير تساهم بشكل أكبر في زيادة درجة حرارة الرغوة الداخلية مقارنة بالغاز الناتج عن الماء المخفف لدرجة الحرارة.
التغييرات التي تنطوي على مؤشر الرغوة، وإطلاق الحرارة، وتبديد الحرارة كلها متزايدة يمكن أن تجعل من الصعب تخمين ما إذا كانت درجة حرارة الرغوة الداخلية سترتفع أو تنخفض. قد يحتاج المرء إلى إدخال مسبار بعد الرغوة لمقارنة درجات الحرارة الداخلية أو إجراء حساب للوصول إلى نتيجة.
لإجراء الحسابات، هناك حاجة إلى عدة صيغ (تعبيرات جبرية) مستمدة من القواعد الأساسية السابقة، إلى جانب بعض البيانات: الحرارة المنطلقة عندما يتفاعل الماء مع TDI لتكوين ثاني أكسيد الكربون بالكيلوجول لكل مول، والحرارة الممتصة أثناء تبخر الميثان بالكيلوجول لكل مول. . لتقدير إجمالي درجة الحرارة الداخلية للرغوة، يجب معرفة الحرارة المنطلقة عند تكوين فورمات الميثيل الأميني، وفورمات ميثيل اليوريا، واليوريا، والبيوريت (بوليوريا)، بالكيلوجول لكل مول، ومعدل التفاعل (زمن التفاعل).
وهذا يفسر أيضًا سبب اختلاف الكثافة المحسوبة من مؤشر الرغوة بشكل كبير عن القيم النظرية والفعلية للرغاوي بدون حشوات عند كثافة 50. كلما انخفضت الكثافة، كلما اقتربت القيم النظرية والفعلية لكثافة الرغوة.
إن فهم المبادئ الكامنة وراء تفاعلات الرغوة أمر بالغ الأهمية. لإتقان الرغوة، يجب علينا أن نسعى جاهدين لإنشاء نموذج تفاعل الرغوة في أذهاننا باستخدام معادلات التفاعل الأربعة التالية. ومن خلال الإلمام بالاختلافات داخل النموذج، فإننا ننمي الحساسية التي تسمح لنا بفهم عملية تفاعل الرغوة بأكملها. يساعد هذا النهج في بناء قاعدة معارفنا ومهاراتنا المهنية في مجال رغوة البولي يوريثان. سواء كنا ندرس بشكل نشط مبادئ تفاعل الرغوة أو نستكشفها بشكل سلبي أثناء عملية الرغوة، فهي بمثابة وسيلة حيوية بالنسبة لنا لتعميق فهمنا للتركيبات وتعزيز مهاراتنا.
رد فعل 1
تي دي آي + بولي إيثر → يوريتان
رد فعل 2
تي دي آي + يوريتان → ايزوسيانورات
رد فعل 3
تي دي آي + ماء → اليوريا + ثاني أكسيد الكربون
رد فعل 4
تي دي آي + اليوريا → بيوريت (بوليوريا)
01: التفاعلان 1 و2 عبارة عن تفاعلات نمو متسلسلة، وتشكل السلسلة الرئيسية للرغوة. قبل أن تصل الرغوة إلى ثلثي ارتفاعها الأقصى، تستطيل السلسلة الرئيسية بسرعة، مع سيطرة تفاعلات نمو السلسلة داخل الرغوة. في هذه المرحلة، ونظرًا لانخفاض درجات الحرارة الداخلية نسبيًا، فإن التفاعلات 3 و4 ليست بارزة.
02: التفاعلان 3 و4 عبارة عن تفاعلات متشابكة تشكل تفرعات الرغوة. وبمجرد أن تصل الرغوة إلى ثلثي ارتفاعها الأقصى، ترتفع درجة الحرارة الداخلية، ويتكثف التفاعلان 3 و4 بسرعة. خلال هذه المرحلة، تكون التفاعلات من 1 إلى 4 قوية، مما يمثل فترة حرجة لتكوين خصائص الرغوة. يوفر التفاعلان 3 و4 الاستقرار والدعم لنظام الرغوة. يساهم التفاعل 1 في مرونة الرغوة، بينما يساهم التفاعلان 3 و4 في قوة شد الرغوة وصلابتها.
03: تسمى التفاعلات المنتجة للغاز بالتفاعلات الرغوية. توليد ثاني أكسيد الكربون هو تفاعل رغوي وتفاعل طارد للحرارة الأساسي في رغوة البولي يوريثان. في أنظمة التفاعل التي تحتوي على الميثان، يشكل تبخر الميثان تفاعل رغوي وعملية ماصة للحرارة.
04: التفاعلات التي تؤدي إلى تكوين مكونات الرغوة تعرف باسم تفاعلات الجيلاتين، وتشمل جميع التفاعلات باستثناء التفاعلات المنتجة للغاز. يتضمن ذلك تكوين اليوريثان واليوريا والإيزوسيانورات والبيوريت (البوليوريا) من التفاعلات من 1 إلى 4.
شخص الاتصال: وينكي لاو
رقم الاتصال: +86-15687268672
البريد الإلكتروني: sales1@alforu.cn
WhatsApp:86 15687268672
عنوان الشركة: NO. 18 طريق الصناعة الجنوبي، مدينة دونغقوان، مقاطعة قوانغدونغ الصينية