Solutions de bout en bout, des matières premières aux équipements de production pour la mousse PU et les matelas.
découpeur de mousse CNC à vendre proposé par Sabtech Technology Limited est le produit phare de l'industrie. Depuis son développement, son application sur le terrain devient de plus en plus étendue. Notre équipe de conception surveille de près son développement afin de répondre aux besoins en constante évolution du marché. Nous adoptons la dernière technologie pour nous assurer qu'elle est à la pointe du marché.
La gamme de produits sous Sabtech la marque est la clé pour nous. Ils se vendent bien, les ventes représentent une grande proportion dans l'industrie. Ils, basés sur nos efforts d'exploration du marché, sont acceptés étape par étape par les utilisateurs de différents districts. En attendant, leur production est augmentée d'année en année. Nous pouvons continuer à augmenter le taux d'exploitation et à étendre la capacité de production afin que la marque, à grande échelle, soit connue dans le monde entier.
Avec un système de service complet, Sabtech Technology Limited peut fournir tous les services nécessaires. Nos équipes de designers, de production, de marketing et de service après-vente sont partenaires pour tous les produits tels que découpeuse de mousse cnc à vendre.
En septembre 2021, nous avons reçu une demande de M. Abdullah en Arabie Saoudite concernant une machine à mousse continue. Le client envisageait de créer une usine de mousse PU pour fabriquer des produits destinés aux marchés local et yéménite. Il avait des connaissances de base sur l'utilisation et la sélection des machines.
Le client n'avait aucune expérience préalable dans la production de mousse auparavant, il était donc particulièrement préoccupé par le support après-vente et l'assistance technique.
Nous avons commencé par analyser le marché cible du client (industrie spécifique) et par comprendre les exigences locales du produit (telles que la densité de la mousse, la dureté, etc.) pour confirmer les besoins de production du client.
Grâce à des vidéoconférences, nous avons guidé le client tout au long de notre processus de production de mousse PU, lui fournissant une compréhension concrète de la production de mousse et mettant en évidence les avantages de commodité et d'efficacité de nos machines par rapport à celles d'autres fabricants.
S'appuyant sur nos plus de 20 ans d'expérience dans le domaine du moussage, nous avons partagé avec le client nos idées sur l'utilisation de la machine et les défis courants du processus de moussage, en répondant à toutes les préoccupations techniques que le client aurait pu avoir.
Nous avons également fourni au client des plans d'aménagement d'usine pour accélérer la mise en place de l'ensemble de la chaîne de production de mousse tout en maximisant l'efficacité de la production.
En raison du haut niveau de confiance du client dans notre service professionnel, il nous a finalement choisi comme fournisseur de machines à mousse et a ensuite effectué des achats répétés pour une ligne de production de mousse recollée et des machines de découpe de mousse.
La résistance à la compression d'une mousse est liée à de nombreux facteurs tels que la structure des différents segments de chaîne composant la mousse, les liaisons chimiques entre les molécules, la cristallinité des polymères, le degré de séparation de phases, la structure des isocyanates et la proportion d'isocyanates. utilisé.
1 La mousse à rebond lent est formée par la réaction de polyols de haut poids moléculaire et de polyols de faible poids moléculaire avec des isocyanates. Les segments mous formés par des polyols de haut poids moléculaire ont de grands volumes, de faibles densités de réticulation et une activité élevée. Ils sont faciles à comprimer et récupèrent rapidement une fois la pression supprimée. Les segments durs formés par des polyols de faible poids moléculaire ont de petits volumes, des densités de réticulation élevées et une faible activité. Ils sont difficiles à comprimer et également difficiles à récupérer une fois les forces externes supprimées. Cette caractéristique confère aux mousses leur fonction de rebond lent et constitue la base de la fabrication de mousses à rebond lent.
Étant donné que les propriétés des segments souples et durs dans les mousses à rebond lent sont différentes, il existe un certain degré de séparation de phases entre eux. S'il n'y a pas de séparation de phase entre les segments, le corps en mousse est un tout étroitement lié à une échelle macro, conduisant au phénomène « bougez un cheveu et tout le corps bouge », ce qui signifie qu'il rétrécit dans son ensemble lorsqu'il est comprimé et se dilate lorsqu'il est comprimé. la pression est relâchée. Cependant, la microstructure de la mousse fait que cette situation ne peut pas être réalisée complètement. En particulier dans les mousses à rebond lent, divers segments de chaîne ont des structures moléculaires différentes, des répartitions inégales du poids moléculaire et une séparation de phases inévitable. Une légère séparation de phase fait que certains segments durs, en raison de leur faible activité, ont des difficultés à récupérer pendant le processus de récupération après la suppression des forces externes. Ces « évadés » freinent plus ou moins la récupération des segments fragiles, conduisant finalement à un rétrécissement.
2 La cristallinité des segments durs, qui est plus forte que celle des segments mous, est également une raison d'une mauvaise récupération. Les matériaux ont des compatibilités similaires, qui s’appliquent également aux mousses à rebond lent. Étant donné que les segments durs ont des points de réticulation plus proches et des densités de réticulation plus élevées, les petites molécules formées sont plus susceptibles de s'agréger ensemble. En raison de la présence de liaisons hydrogène, ces substances agrégées contenant de l’hydrogène améliorent la cristallinité du matériau, conduisant à des forces de cohésion plus importantes. Après la compression, des forces externes modifient l’état d’agrégation des segments de chaîne, facilitant ainsi la fusion des groupes polaires. Lorsque la force externe est relâchée, le nouvel état d'agrégation, en raison de fortes forces de cohésion, est difficile à revenir à l'état de précontrainte, ce qui entraîne un retrait des mousses à rebond lent.
3 La structure des isocyanates est également un facteur affectant la résistance à la compression des mousses à rebond lent. Le TDI est généralement utilisé pour produire des mousses à rebond lent. Étant donné que les deux groupes NCO de la molécule TDI se trouvent aux positions 2,4 et 2,6, ils présentent un certain angle entre eux, ce qui les rend sujets à la déformation sous contrainte. En particulier dans des conditions de pressage à chaud, des déformations et des pertes de chaleur importantes se produisent, particulièrement évidentes dans les mousses des bonnets de soutien-gorge, ce qui rend difficile la récupération après ces déformations.
4 Le faible indice NCO des isocyanates utilisés dans la préparation des mousses à rebond lent est également une raison d'une mauvaise récupération. L'indice NCO des mousses ordinaires est généralement supérieur à 100, tandis que dans les mousses à rebond lent, l'indice NCO se situe généralement entre 85 et 95. Cela signifie que 5 à 15 % des groupes hydroxyle ne participent pas à la réaction. Par conséquent, bien que la surface de la mousse semble être une seule entité, il existe à l’intérieur une partie considérable de segments de chaîne indépendants les uns des autres.
Solutions pour améliorer la résistance à la compression des mousses à rebond lent:
1. Utilisez du polyéther à haute teneur en EO (appelé polyéther agent gonflant) pour remplacer du polyéther à rebond lent.
A Le polyéther à haute teneur en EO a un faible indice d'hydroxyle et un poids moléculaire élevé. Après avoir réagi avec les isocyanates, les segments formés ont des poids moléculaires supérieurs ou proches de ceux formés lorsque le polyéther ordinaire réagit avec les isocyanates, réduisant ainsi le degré de séparation de phases et la cristallinité.
B Le polyéther à haute teneur en EO a des segments doux et lisses, qui peuvent fournir de bons effets de rebond lent. De plus, l’ajout de polyéther à haute teneur en EO peut améliorer efficacement la résistance aux basses températures des mousses à rebond lent.
2. Ajoutez une petite quantité de polyester modifié au polyéther pour augmenter la force de cohésion du matériau.
Les segments en polyester, du fait de la présence de groupes ester, ont des forces de cohésion internes élevées et de bonnes propriétés de traction et de compression, améliorant considérablement la résistance à la compression des mousses à rebond lent.
3. Utilisez une petite quantité de polyéther à haute fonctionnalité et de poids moléculaire élevé comme agent de réticulation et remplacez du polyéther ordinaire par du polyéther à haute activité pour un rebond lent.
Cela perturbe la distribution des segments de chaîne, réduit le degré de séparation des phases et augmente le degré de réaction, réduisant ainsi la cristallinité.
4. Utilisez MDI ou ajoutez MDI à TDI.
Le MDI a une structure différente du TDI et produit des mousses avec une meilleure résistance à la compression et moins de pertes de chaleur. Si vous utilisez du MDI, il est préférable d’utiliser du MDI modifié (avec une ramification élevée et une fermeture facile des cellules) ; Le MDI liquide peut également être utilisé, car il s'agit d'une cyclisation intramoléculaire et plus résistant à la compression. Les mousses à rebond lent fabriquées avec tous les MDI ont une bien meilleure résistance à la compression que le TDI pur, et de nombreux fabricants l'utilisent déjà.
La brûlure de la mousse est un phénomène courant rencontré dans la production réelle de mousse. Vous trouverez ci-dessous les raisons de ce problème ainsi que des solutions potentielles.:
(1) Problèmes liés à la qualité des polyéther polyols: Pendant la production et le transport, la teneur en eau du produit dépasse la norme, il y a un excès de peroxydes et d'impuretés à bas point d'ébullition, la concentration d'ions métalliques est trop élevée et la sélection et la concentration d'antioxydants sont inappropriées.
(2) Formulation: Dans les formulations à faible densité, l'indice TDI est trop élevé, la proportion d'eau par rapport aux agents gonflants physiques dans l'agent moussant est inappropriée, la quantité d'agent gonflant physique est insuffisante et la teneur en eau est excessive.
(3) Impact climatique: En été, les températures élevées entraînent une dissipation thermique lente, des températures de matériaux élevées, une humidité de l'air élevée et la température au centre de réaction dépasse la température de l'antioxydant.
(4) Stockage inapproprié: Lorsque l'indice TDI augmente, l'énergie thermique accumulée pendant la post-maturation provoque une augmentation de la température interne, conduisant à une brûlure.
Comprendre les principes derrière les réactions de mousse est crucial. Pour maîtriser le moussage, nous devons nous efforcer d’établir dans notre esprit un modèle de réaction de mousse en utilisant les quatre équations de réaction suivantes. Grâce à la familiarité avec les variations au sein du modèle, nous cultivons une sensibilité qui nous permet de comprendre l’ensemble du processus de réaction de la mousse. Cette approche permet de structurer notre base de connaissances et nos compétences professionnelles en mousse polyuréthane. Qu'il s'agisse d'étudier activement les principes de réaction de la mousse ou de les explorer passivement pendant le processus de moussage, cela constitue pour nous un moyen essentiel d'approfondir notre compréhension des formulations et d'améliorer nos compétences.
Réaction 1
TDI + Polyéther → Uréthane
Réaction 2
TDI + Uréthane → Isocyanurate
Réaction 3
TDI + Eau → Urée + Dioxyde de Carbone
Réaction 4
TDI + Urée → Biuret (Polyurée)
01 : Les réactions 1 et 2 sont des réactions de croissance en chaîne, formant la chaîne principale de la mousse. Avant que la mousse n’atteigne les deux tiers de sa hauteur maximale, la chaîne principale s’allonge rapidement, les réactions de croissance en chaîne prédominant à l’intérieur de la mousse. A ce stade, en raison des températures internes relativement basses, les réactions 3 et 4 ne sont pas importantes.
02 : Les réactions 3 et 4 sont des réactions de réticulation, formant les branches de la mousse. Une fois que la mousse atteint les deux tiers de sa hauteur maximale, la température interne augmente et les réactions 3 et 4 s'intensifient rapidement. Durant cette étape, les réactions 1 à 4 sont vigoureuses, marquant une période critique pour la formation des propriétés moussantes. Les réactions 3 et 4 assurent la stabilité et le soutien du système de mousse. La réaction 1 contribue à l’élasticité de la mousse, tandis que les réactions 3 et 4 contribuent à la résistance à la traction et à la dureté de la mousse.
03 : Les réactions produisant du gaz sont appelées réactions moussantes. La génération de dioxyde de carbone est une réaction de moussage et la principale réaction exothermique de la mousse de polyuréthane. Dans les systèmes réactionnels contenant du méthane, la vaporisation du méthane constitue une réaction de moussage et un processus endothermique.
04 : Les réactions conduisant à la formation de constituants de mousse sont appelées réactions de gélification et englobent toutes les réactions à l'exception des réactions produisant des gaz. Cela inclut la formation d'uréthane, d'urée, d'isocyanurate et de biuret (polyurée) à partir des réactions 1 à 4.
Vous êtes-vous déjà demandé comment se forme la mousse plastique polyuréthane ? Dans l’article précédent, nous avons révélé les réactions de base qui se cachent derrière : les isocyanates, les polyéthers (ou polyesters) polyols et l’eau travaillent tous ensemble pour créer cette substance magique. Alors, cela signifie-t-il que dans la production réelle, nous n’avons besoin que de ces trois matières premières ? La réponse est loin de là. Dans notre processus de production actuel, afin de contrôler plus précisément la vitesse de réaction et de produire des produits offrant d’excellentes performances, nous devons souvent exploiter la puissance de divers additifs. Ces additifs ont non seulement de nombreuses applications, mais peuvent également jouer un rôle important en rendant notre processus de production plus efficace et plus stable.
Tensioactifs / Huile de silicone
Les tensioactifs, également appelés huiles de silicone, sont également appelés stabilisants de mousse. Dans le processus de production de mousse polyuréthane, son rôle est crucial. La fonction fondamentale de l'huile de silicone est de réduire la tension superficielle du système moussant, améliorant ainsi la miscibilité entre les composants, ajustant la taille des bulles, contrôlant la structure des bulles et améliorant la stabilité de la mousse. En outre, il a également la responsabilité d’empêcher l’effondrement de la mousse. On peut donc dire que l’huile de silicone joue un rôle indispensable dans la production de mousse de polyuréthane.
Catalyseurs
Les catalyseurs jouent un rôle crucial dans le processus de synthèse du polyuréthane, principalement en accélérant la réaction entre les isocyanates, l'eau et les polyols. Cette réaction est une réaction de polymérisation typique. Sans la présence de catalyseurs, cette réaction peut se dérouler très lentement, voire pas du tout. Actuellement, les catalyseurs sur le marché sont principalement divisés en deux types : les catalyseurs aminés et les catalyseurs métalliques organiques. Les catalyseurs aminés sont des composés à base d'atomes d'azote, qui peuvent favoriser efficacement la réaction de polymérisation du polyuréthane. Les catalyseurs métalliques organiques, quant à eux, sont des composés qui affectent particulièrement la réaction entre les polyols et les isocyanates lors de la formation de polyuréthane, généralement des composés organostanniques. La caractéristique de ces catalyseurs réside dans leur capacité à contrôler avec précision le processus de réaction, ce qui donne un produit final plus uniforme et plus stable.
Agents gonflants
Les agents gonflants sont des substances qui génèrent du gaz lors de la réaction du polyuréthane et contribuent à la formation de mousse. Selon la manière dont le gaz est généré, les agents gonflants sont généralement divisés en agents gonflants chimiques et agents gonflants physiques. Les agents gonflants chimiques font référence à des substances qui subissent des modifications chimiques au cours de la réaction, génèrent des gaz et favorisent la formation de mousse. De nombreuses substances courantes dans notre vie quotidienne sont en réalité des agents gonflants chimiques, comme l'eau. Les agents gonflants physiques, quant à eux, sont des substances qui génèrent du gaz par des moyens physiques. Par exemple, le dichlorométhane (MC) est un agent gonflant physique courant.
Autres additifs
S'appuyer uniquement sur des matières premières de base est loin d'être suffisant pour que les produits aient des performances exceptionnelles. Afin de répondre aux différents besoins, d’autres additifs sont intelligemment incorporés au processus de production, et leur rôle ne doit pas être sous-estimé. Par exemple, les retardateurs de flamme peuvent ajouter une résistance aux flammes aux produits, les agents de réticulation peuvent améliorer leur stabilité, les colorants et les charges peuvent donner aux produits une apparence et une texture plus colorées, et divers autres additifs ayant des fonctions différentes jouent également leur rôle. Ce sont ces additifs soigneusement sélectionnés qui améliorent considérablement les performances des produits et offrent aux utilisateurs une meilleure expérience utilisateur.
Personne à contacter : Wenky Lau
Numéro de contact : +86-15687268672
Courriel: sales1@alforu.cn
WhatsApp:86 15687268672
Adresse de l'entreprise : NON. 18 South Industry Road, ville de Dongguan, province du Guangdong Chine