Soluciones integrales, desde materias primas hasta equipos de producción de espuma de PU y colchones.
La ventaja competitiva de Sabtech Technology Limited ha mejorado enormemente con nuestro producto: el equipo de corte de espuma de poliuretano. La competencia en el mercado en el siglo XXI estará enormemente influenciada por factores como la innovación tecnológica, la garantía de calidad, el diseño único, en el que el producto es casi insuperable. Más allá de eso, el producto juega un papel vital para llevar un nuevo estilo de vida y mantiene la competitividad a largo plazo.
Todos los productos bajo Sabtech se comercializan con éxito en el país y en el extranjero. Todos los años recibimos pedidos en cantidades significativas cuando se muestran en exposiciones; siempre son nuevos clientes. En cuanto a la tasa de recompra respectiva, la cifra siempre es alta, principalmente por la calidad premium y los excelentes servicios, estos son los mejores comentarios que brindan los antiguos clientes. En el futuro, sin duda se combinarán para liderar una tendencia en el mercado, basada en nuestra continua innovación y modificación.
En Sabtech Technology Limited, nuestro exclusivo nivel de servicio interno es la garantía de equipos de corte de espuma de poliuretano de calidad. Brindamos un servicio oportuno y precios competitivos para nuestros clientes y queremos que nuestros clientes tengan la experiencia de usuario perfecta brindándoles productos y servicios personalizados.
Poliéter poliol: valor de hidroxilo 36, hidroxilo primario > 65%, 60%.
Poliol polimérico: Valor de hidroxilo 28, Copolímero 20%, 40%.
Agua: 3%.
80TDI y MDI polimérico (viscosidad 300 mpa): 80:20.
T12: 0.025%.
A33: 0.4%.
Aceite de Silicona HR-3: 1%.
Reticulante HA-1: 6%.
Di(b-dimetilaminoetil)éter: 0,15%.
Fase uno: proceso de nucleación de gases
Las materias primas reaccionan en fase líquida o dependen de la generación de sustancias gaseosas y de la volatilización del gas durante la reacción. A medida que avanza la reacción y se genera una gran cantidad de calor, la cantidad de sustancia gaseosa generada y volatilizada aumenta continuamente. Cuando la concentración de gas excede la concentración de saturación, comienzan a formarse finas burbujas de gas en la fase de solución y aumentan. A medida que la reacción se acerca a su fin, aparece un fenómeno lechoso en el material de poliuretano líquido, conocido como "tiempo lechoso".
Fase dos: proceso de autonucleación
En esta etapa, la concentración de gas continúa aumentando y alcanza un cierto nivel. Después de eso, la concentración de gas disminuye gradualmente y ya no se forman nuevas burbujas. El gas en la solución alcanza gradualmente una concentración de saturación de equilibrio. Durante esta etapa, la viscosidad del material líquido aumenta gradualmente y el gas se fusiona y expande continuamente en la fase líquida gradualmente viscosa. El volumen de las burbujas continúa expandiéndose. La fase líquida viscosa que forma la pared exterior de las burbujas se adelgaza gradualmente. Debido a la relación de tensión superficial entre las interfaces de gas y líquido, el volumen de la burbuja aumenta de pequeño a grande, transformándose gradualmente de una forma esférica a una forma geométrica tridimensional compuesta de películas delgadas de polímero, formando finalmente una estructura de red abierta de tres- microporos dimensionales. En el proceso de síntesis de espuma de poliuretano, esta etapa presenta expansión del volumen del polímero y aumento de la espuma.
Fase tres:
Una vez que la concentración de gas cae a un cierto nivel, ya no se forman burbujas. Con la permeación del gas, la concentración continúa disminuyendo, alcanzando el equilibrio saturado final en el proceso de transición de la pared de espuma polimérica de un estado líquido viscoso a un estado sólido que no fluye.
Condiciones de prueba:
1. La formación de espuma rápida se toma del centro de la espuma, mientras que las muestras de espuma moldeada se toman de la parte central o para pruebas de muestra completa.
2. La espuma recién fabricada debe madurar durante 72 horas en su estado natural antes de tomar la muestra. Las muestras deben colocarse en un ambiente de temperatura y humedad constantes (según GB/T2918: 23 ± 2 ℃ , humedad relativa 50 ± 5%).
Densidad : Densidad = Masa (kg) / Volumen (m3)
Dureza : Deflexión por carga de indentación (ILD), Deflexión por carga de compresión (CLD)
La principal diferencia entre estos dos métodos de prueba es el área de carga de la espuma plástica. En la prueba ILD, la muestra se somete a un área comprimida de 323 cm2, mientras que en CLD se comprime toda la muestra. Aquí, sólo discutiremos el método de prueba ILD.
En la prueba ILD, el tamaño de la muestra es 38*38*50 mm, con un diámetro del cabezal de prueba de 200 mm (con una esquina redondeada de R=10 en el borde inferior) y una placa de soporte con orificios de 6 mm espaciados 20 mm. La velocidad de carga del cabezal de prueba es (100 ± 20) mm/min. Inicialmente, se aplica una presión de 5 N como punto cero, luego la muestra se comprime hasta el 70% de su espesor en el punto cero y se descarga a la misma velocidad. Esta carga y descarga se repite tres veces como precarga y luego se comprime inmediatamente a la misma velocidad. Los espesores de compresión son 25 ± 1% y 65 ± 1%. Después de alcanzar la deformación, mantenga presionado 30 ± 1s y registre el valor de sangría relativo. El valor registrado es la dureza de la indentación en ese nivel de compresión.
Además, 65 % ILD / 25 % ILD = relación de compresión, que es una medida de la comodidad de la espuma.
Resistencia a la tracción, alargamiento de rotura : Se refiere a la tensión máxima de tracción aplicada durante el ensayo de tracción hasta la fractura, y el porcentaje de alargamiento de la muestra en el momento de la fractura.
Resistencia a la tracción = Carga en la fractura / Área de la sección transversal original de la muestra
Elongación en la rotura = (Distancia de fractura - Distancia original) / Distancia original * 100%
Resistencia al desgarre : Mide la resistencia del material al desgarro aplicando una fuerza de desgarro especificada en una muestra de forma definida.
Tamaño de la muestra: 150*25*25 mm (GB/T 10808), con la dirección del espesor de la muestra como dirección de subida de la espuma. Se realiza una incisión de 40 mm de largo a lo largo de la dirección del espesor (dirección de subida de la espuma) en el centro de un extremo de la muestra. Mida el espesor a lo largo de la dirección del espesor de la muestra, luego abra la muestra y sujétela en el accesorio de la máquina de prueba. Aplique carga a una velocidad de 50-20 mm/min, usando una cuchilla para cortar la muestra, manteniendo la cuchilla en la posición central. Registre el valor máximo cuando la muestra se rompe o rasga a 50 mm.
Resistencia al desgarro = Valor de fuerza máxima (N) / Espesor promedio de la muestra (cm)
Generalmente se analizan tres muestras y se toma la media aritmética.
Resiliencia : Mide el rendimiento de rebote de la espuma al permitir que una bola de acero de peso y diámetro dado caiga libremente sobre la superficie de la muestra de espuma plástica desde una altura específica. La relación entre la altura del rebote y la altura de caída de la bola de acero indica la resiliencia de la espuma.
Requisitos de la prueba: Tamaño de la muestra 100*100*50 mm, la dirección de caída de la bola debe ser consistente con la dirección de uso de la espuma. El tamaño de la bola de acero es ∮ 164 mm, peso 16,3 gy cae desde una altura de 460 mm.
Tasa de resiliencia = Altura de rebote de la bola de acero / Altura de caída de la bola de acero * 100%
Nota: Las muestras deben estar horizontales, la bola de acero debe fijarse antes de caer (estática), cada muestra se prueba tres veces con intervalos de 20 segundos y se registra el valor máximo.
Deformación permanente por compresión : En un ambiente constante, la muestra de material de espuma se mantiene bajo deformación constante durante un cierto período, luego se le permite recuperarse durante un período de tiempo, observando el efecto de la deformación en el espesor de la muestra. La relación entre la diferencia entre el espesor inicial y el espesor final de la muestra con respecto al espesor inicial representa la deformación por compresión permanente de la espuma plástica.
Deformación permanente por compresión = (Espesor inicial de la muestra - Espesor final de la muestra) / Espesor inicial de la muestra * 100
Resistente al fuego
COV (compuestos orgánicos volátiles)
1. Principios de reacción
El poliuretano a base de poliéster se obtiene mediante la reacción de poliéster e isocianato. El poliéster se sintetiza mediante una reacción de condensación de ácidos polifuncionales (como el ácido adípico, el ácido ftálico, el ácido succínico, etc.) y polioles (como el etilenglicol, el propilenglicol, el trimetilolpropano, etc.). El poliéster se puede dividir en poliéster hidroxilo y poliéster carboxílico. La espuma de poliuretano se elabora utilizando poliéster hidroxilo con un exceso de polioles.
Poliéster hidroxilo (exceso de poliol): 2OH-R-OH + HOOC-R'-COOH → HO-R-OCO-R'-COO-R-OH
Poliéster carboxílico (exceso de poliácido): OH-R-OH + 2HOOC-R'-COOH → HOOC-R'-COO-R-OCO-R'-COOH
El poliuretano a base de poliéter se obtiene mediante la reacción de poliéter polioles e isocianato. Los poliéterpolioles se obtienen mediante polimerización con apertura de anillo de compuestos de oxirano (como óxido de etileno, óxido de propileno) utilizando iniciadores que contienen hidrógeno activo (como alcoholes, aminas).
Poliéter polioles: R-OH + nPO → R-(-O-CH-CH3-CH2-O)n-H
Ambos tipos de poliuretanos se forman finalmente mediante la reacción de grupos hidroxilo con isocianatos para producir grupos uretano.:
R-NCO + R'-OH → RNHCOOR'
Entonces, la principal diferencia en el mecanismo de reacción entre los dos tipos de poliuretano radica en si la cadena molecular del segmento blando contiene principalmente enlaces éster (-COO-) o enlaces éter (-C-O-C-).
2. Resultados de la reacción
El poliuretano a base de poliéster tiene alta resistencia mecánica, buena resistencia al aceite y al calor. Por lo tanto, se utiliza principalmente en suelas de zapatos de espuma microporosa, elastómeros, revestimientos y cuero sintético. Sin embargo, debido a la presencia de enlaces éster (dobles enlaces insaturados), el poliuretano a base de poliéster no es tan estable en términos de resistencia a la hidrólisis, resistencia a bajas temperaturas, resistencia a la oxidación, resistencia a los ácidos y resistencia a los álcalis como el poliuretano a base de poliéter.
3. Tendencias de desarrollo
Debido a la alta viscosidad de los poliéster polioles, la mala compatibilidad con otros componentes y la dificultad de construcción, junto con los altos costos de las materias primas, su aplicación en el campo de los poliuretanos es limitada. Por otro lado, el poliuretano a base de poliéter tiene una amplia gama de aplicaciones, principalmente en plásticos espumados sintéticos.
En los últimos años, para mejorar la procesabilidad de los poliéster polioles, se han introducido compuestos de oxirano (tales como PO/EO) en las moléculas de poliéster poliol. Esto da como resultado cadenas moleculares de segmentos blandos que contienen enlaces éster (-COO-) y enlaces éter (-C-O-C-). Los poliuretanos fabricados a partir de estos nuevos polioles tienen características tanto de poliuretanos basados en poliéster como de poliuretanos basados en poliéter.
La producción de espuma blanda en forma de bloque normalmente utiliza el máquina de espuma por lotes proceso, un método de producción de tipo hueco. Este método evolucionó a partir de la espumación manual en los laboratorios. El proceso implica verter inmediatamente los materiales de reacción mezclados en un molde abierto que se asemeja a una caja de madera o metal, de ahí el nombre de "espuma en caja". Los moldes (cajas) para espuma encajonada pueden ser rectangulares o cilíndricos. Para evitar que el bloque de espuma forme una parte superior abovedada, se puede colocar una placa de cubierta flotante en la parte superior de la espuma durante la formación de espuma. La placa de cubierta permanece estrechamente unida a la parte superior de la espuma y se mueve gradualmente hacia arriba a medida que la espuma sube.
El equipo principal para la producción de espuma en caja incluye: 1) Agitador eléctrico-mecánico, barril mezclador; 2) Caja de molde; 3) Herramientas de pesaje como básculas, básculas de plataforma, tazas medidoras, jeringas de vidrio y otros dispositivos de medición; 4) Cronómetro para controlar el tiempo de mezcla. Se aplica una pequeña cantidad de agente desmoldeante a las paredes internas de la caja para facilitar la extracción de la espuma.
Las ventajas de producir espuma blanda utilizando el método de espuma en caja incluyen: baja inversión en equipo, tamaño reducido, estructura de equipo simple, operación y mantenimiento fáciles y convenientes, y producción flexible. Algunas empresas nacionales y municipales pequeñas y con fondos insuficientes utilizan este método para producir espuma blanda de poliuretano. El moldeado de espuma en caja es un método de producción no continuo para espuma blanda, por lo que la eficiencia de producción es menor que la de los métodos continuos y el equipo se opera principalmente de forma manual, lo que resulta en una mayor intensidad de mano de obra. La capacidad de producción es limitada y hay una mayor pérdida en el corte de espumas plásticas. Los parámetros del proceso para la espuma en caja deben controlarse dentro de un cierto rango porque incluso con la misma fórmula, las propiedades de la espuma pueden no ser las mismas cuando se utilizan diferentes parámetros del proceso. La temperatura de la materia prima debe controlarse a (25 ± 3) grados Celsius, velocidad de mezclado de 900 a 1000 r/min y tiempo de mezclado de 5 a 12 segundos. El tiempo de mezclado de la mezcla de poliéter y aditivos antes de agregar TDI se puede ajustar de manera flexible dependiendo de la situación, y después de agregar TDI, un tiempo de mezclado de 3 a 5 segundos es suficiente, siendo la clave un mezclado completo después de agregar TDI.
Durante el moldeado de espuma en caja, se debe prestar atención a los siguientes aspectos:
1) Prepararse antes de la producción, incluida la temperatura del material y la inspección del equipo de la máquina;
2) Medir con la mayor precisión posible;
3) Controlar adecuadamente el tiempo de mezcla;
4) Verter el líquido del material mezclado de forma rápida y constante, evitando fuerza excesiva;
5) Asegúrese de que la caja esté colocada de manera estable, con el papel inferior plano, para evitar un flujo desigual del material durante el vertido;
6) Cuando la espuma suba, presione suavemente la cubierta para asegurarse de que la espuma suba suavemente;
7) Los aditivos deben usarse según lo especificado y los materiales premezclados no deben dejarse por mucho tiempo.
Han surgido tres tipos de equipos de espuma en el moldeado de espuma en caja. Inicialmente, se pesaron diversas materias primas en un recipiente según la fórmula, se mezclaron con una mezcladora de alta velocidad y se vertieron en el molde de caja para formar espuma y darles forma. Este método a menudo generaba residuos en el recipiente de mezcla. Un método mejorado utilizaba una bomba dosificadora para transportar las materias primas al barril de mezcla para una mezcla uniforme. Un dispositivo mecánico cerró automáticamente el fondo del barril y se utilizó aire comprimido para presionar el material en la caja de espuma para darle forma. Ambos métodos podrían crear remolinos debido a la rápida entrada de materiales en la caja, lo que podría causar defectos o depresiones en los productos de espuma. El dispositivo de espuma en caja más razonable es colocar un barril mezclador sin fondo directamente en el centro de la caja de espuma. Una bomba dosificadora transporta las distintas materias primas necesarias para la formación de espuma al barril de mezcla. Después de mezclar durante unos segundos, el dispositivo de elevación levanta el cilindro mezclador fuera de la caja de espuma, permitiendo que el material de espuma fluya suavemente sobre todo el fondo de la caja. Esto evita el agrietamiento de la espuma debido a los remolinos del material y garantiza una altura relativamente uniforme en toda la espuma.
Se puede agregar un dispositivo de presión al material de espuma en expansión para producir espuma con la parte superior plana, lo que reduce el desperdicio durante el corte. Este dispositivo es adecuado para la producción de espuma blanda de poliuretano tipo poliéter y espuma blanda en bloque de alto rebote. Para bloques de poliuretano de acetato de polivinilo, este método no se puede utilizar debido a la alta viscosidad del material y generalmente se emplean métodos continuos.
Persona de contacto: Wenky Lau
Número de contacto: +86-15687268672
Correo electrónico: sales1@alforu.cn
WhatsApp:86 15687268672
Dirección de la empresa: NO. 18 South Industry Road, ciudad de Dongguan, provincia de Guangdong China